Genomic prediction and training set optimization in a structured Mediterranean oat population
Trabajo presentado en el IV Symposium on Physiology and Breeding of Cereals, celebrado en Pamplona el 16 y 17 de diciembre de 2021.
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | comunicación de congreso biblioteca |
Published: |
2021-12
|
Online Access: | http://hdl.handle.net/10261/268490 http://dx.doi.org/10.13039/501100004837 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-inia-es-10261-268490 |
---|---|
record_format |
koha |
spelling |
dig-inia-es-10261-2684902022-05-04T01:42:08Z Genomic prediction and training set optimization in a structured Mediterranean oat population Rio, Simon Gallego-Sánchez, L. Montilla-Bascón, Gracia Canales, Francisco José Isidro-Sánchez, Julio Prats, Elena Ministerio de Ciencia e Innovación (España) Trabajo presentado en el IV Symposium on Physiology and Breeding of Cereals, celebrado en Pamplona el 16 y 17 de diciembre de 2021. In this study, we investigated the efficiency of genomic prediction and training set optimization in a highly structured population of cultivars and landraces of cultivated oat (Avena sativa) from the Mediterranean basin, including white (subsp. sativa) and red (subsp. byzantina) oats, genotyped using genotype-by- sequencing markers and evaluated for agronomic traits in Southern Spain. For most traits, the predictive abilities were moderate to high with little differences between models, except for biomass for which Bayes-B showed a substantial gain compared to other models. The consistency between the structure of the training population and the population to be predicted was key to the predictive ability of genomic predictions. The predictive ability of inter-subspecies predictions was indeed much lower than that of intra-subspecies predictions for all traits. Regarding training set optimization, the linear mixed model optimization criteria (prediction error variance (PEVmean) and coefficient of determination (CDmean)) performed better than the heuristic approach “partitioning around medoids,” even under high population structure. The superiority of CDmean and PEVmean could be explained by their ability to adapt the representation of each genetic group according to those represented in the population to be predicted. These results represent an important step towards the implementation of genomic prediction in oat breeding programs and address important issues faced by the genomic prediction community regarding population structure and training set optimization. This work was supported by the Spanish Ministry of Science and Innovation [PID2019-104518RB-I00], and regional government through the AGR-253 group. 2022-05-03T11:40:10Z 2022-05-03T11:40:10Z 2021-12 2022-05-03T11:40:10Z comunicación de congreso http://purl.org/coar/resource_type/c_5794 IV Symposium on Physiology and Breeding of Cereals (2021) http://hdl.handle.net/10261/268490 http://dx.doi.org/10.13039/501100004837 #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104518RB-I00/ES/MEJORA DE AVENA RESILIENTE ADAPTADA A AMBIENTES MEDITERRANEOS/ Sí open |
institution |
INIA ES |
collection |
DSpace |
country |
España |
countrycode |
ES |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-inia-es |
tag |
biblioteca |
region |
Europa del Sur |
libraryname |
Biblioteca del INIA España |
description |
Trabajo presentado en el IV Symposium on Physiology and Breeding of Cereals, celebrado en Pamplona el 16 y 17 de diciembre de 2021. |
author2 |
Ministerio de Ciencia e Innovación (España) |
author_facet |
Ministerio de Ciencia e Innovación (España) Rio, Simon Gallego-Sánchez, L. Montilla-Bascón, Gracia Canales, Francisco José Isidro-Sánchez, Julio Prats, Elena |
format |
comunicación de congreso |
author |
Rio, Simon Gallego-Sánchez, L. Montilla-Bascón, Gracia Canales, Francisco José Isidro-Sánchez, Julio Prats, Elena |
spellingShingle |
Rio, Simon Gallego-Sánchez, L. Montilla-Bascón, Gracia Canales, Francisco José Isidro-Sánchez, Julio Prats, Elena Genomic prediction and training set optimization in a structured Mediterranean oat population |
author_sort |
Rio, Simon |
title |
Genomic prediction and training set optimization in a structured Mediterranean oat population |
title_short |
Genomic prediction and training set optimization in a structured Mediterranean oat population |
title_full |
Genomic prediction and training set optimization in a structured Mediterranean oat population |
title_fullStr |
Genomic prediction and training set optimization in a structured Mediterranean oat population |
title_full_unstemmed |
Genomic prediction and training set optimization in a structured Mediterranean oat population |
title_sort |
genomic prediction and training set optimization in a structured mediterranean oat population |
publishDate |
2021-12 |
url |
http://hdl.handle.net/10261/268490 http://dx.doi.org/10.13039/501100004837 |
work_keys_str_mv |
AT riosimon genomicpredictionandtrainingsetoptimizationinastructuredmediterraneanoatpopulation AT gallegosanchezl genomicpredictionandtrainingsetoptimizationinastructuredmediterraneanoatpopulation AT montillabascongracia genomicpredictionandtrainingsetoptimizationinastructuredmediterraneanoatpopulation AT canalesfranciscojose genomicpredictionandtrainingsetoptimizationinastructuredmediterraneanoatpopulation AT isidrosanchezjulio genomicpredictionandtrainingsetoptimizationinastructuredmediterraneanoatpopulation AT pratselena genomicpredictionandtrainingsetoptimizationinastructuredmediterraneanoatpopulation |
_version_ |
1767602880860127232 |