MEMOTE for standardized genome-scale metabolic model testing

Reconstructing metabolic reaction networks enables the development of testable hypotheses of an organism’s metabolism under different conditions1. State-of-the-art genome-scale metabolic models (GEMs) can include thousands of metabolites and reactions that are assigned to subcellular locations. Gene–protein–reaction (GPR) rules and annotations using database information can add meta-information to GEMs. GEMs with metadata can be built using standard reconstruction protocols2, and guidelines have been put in place for tracking provenance and enabling interoperability, but a standardized means of quality control for GEMs is lacking3. Here we report a community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality.

Saved in:
Bibliographic Details
Main Authors: Lieven, Christian, Beber, Moritz E., Olivier, Brett G., Bergmann, Frank T., Ataman, Meric, Babaei, Parizad, Bartell, Jennifer A., Blank, Lars M., Chauhan, Siddharth, Correia, Kevin, Diener, Christian, Dräger, Andreas, Ebert, Birgitta E., Edirisinghe, Janaka N., Faria, José P., Feist, Adam M., Fengos, Georgios, Fleming, Ronan M. T., García-Jiménez, Beatriz, Hatzimanikatis, Vassily, Van Helvoirt, Wout, Henry, Christopher S., Hermjakob, Henning, Herrgård, Markus J., Kaafarani, Ali, Kim, Hyun Uk, King, Zachary, Klamt, Steffen, Klipp, Edda, Koehorst, Jasper J., König, Matthias, Lakshmanan, Meiyappan, Lee, Dong-Yup, Lee, Sang Yup, Lee, Sunjae, Lewis, Nathan E., Liu, Filipe, Ma, Hongwu, Machado, Daniel, Mahadevan, Radhakrishnan, Maia, Paulo, Mardinoglu, Adil, Medlock, Gregory L., Monk, Jonathan M., Nielsen, Jens, Nielsen, Lars K., Nogales, Juan, Nookaew, Intawat, Palsson, Bernhard Ø, Papin, Jason A., Patil, Kiran R., Poolman, Mark, Price, Nathan D., Resendis-Antonio, Osbaldo, Richelle, Anne, Rocha, Isabel, Sánchez, Benjamín J., Schaap, Peter J., Malik Sheriff, Rahuman S., Shoaie, Saeed, Sonnenschein, Nikolaus, Teusink, Bas, Vilaça, Paulo, Vik, Jon Olav, Wodke, Judith A. H., Xavier, Joana C., Yuan, Qianqian, Zakhartsev, Maksim, Zhang, Cheng
Other Authors: Research Council of Norway
Format: carta al director biblioteca
Published: Springer Nature 2020-03
Subjects:Biochemical networks, Computational models, Software,
Online Access:http://hdl.handle.net/10261/230245
http://dx.doi.org/10.13039/501100000781
http://dx.doi.org/10.13039/501100002347
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100004063
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/100000057
http://dx.doi.org/10.13039/100000865
http://dx.doi.org/10.13039/501100003725
http://dx.doi.org/10.13039/501100003627
http://dx.doi.org/10.13039/501100000769
http://dx.doi.org/10.13039/100000888
http://dx.doi.org/10.13039/100001906
http://dx.doi.org/10.13039/100000002
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-inia-es-10261-230245
record_format koha
institution INIA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-inia-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del INIA España
topic Biochemical networks
Computational models
Software
Biochemical networks
Computational models
Software
spellingShingle Biochemical networks
Computational models
Software
Biochemical networks
Computational models
Software
Lieven, Christian
Beber, Moritz E.
Olivier, Brett G.
Bergmann, Frank T.
Ataman, Meric
Babaei, Parizad
Bartell, Jennifer A.
Blank, Lars M.
Chauhan, Siddharth
Correia, Kevin
Diener, Christian
Dräger, Andreas
Ebert, Birgitta E.
Edirisinghe, Janaka N.
Faria, José P.
Feist, Adam M.
Fengos, Georgios
Fleming, Ronan M. T.
García-Jiménez, Beatriz
Hatzimanikatis, Vassily
Van Helvoirt, Wout
Henry, Christopher S.
Hermjakob, Henning
Herrgård, Markus J.
Kaafarani, Ali
Kim, Hyun Uk
King, Zachary
Klamt, Steffen
Klipp, Edda
Koehorst, Jasper J.
König, Matthias
Lakshmanan, Meiyappan
Lee, Dong-Yup
Lee, Sang Yup
Lee, Sunjae
Lewis, Nathan E.
Liu, Filipe
Ma, Hongwu
Machado, Daniel
Mahadevan, Radhakrishnan
Maia, Paulo
Mardinoglu, Adil
Medlock, Gregory L.
Monk, Jonathan M.
Nielsen, Jens
Nielsen, Lars K.
Nogales, Juan
Nookaew, Intawat
Palsson, Bernhard Ø
Papin, Jason A.
Patil, Kiran R.
Poolman, Mark
Price, Nathan D.
Resendis-Antonio, Osbaldo
Richelle, Anne
Rocha, Isabel
Sánchez, Benjamín J.
Schaap, Peter J.
Malik Sheriff, Rahuman S.
Shoaie, Saeed
Sonnenschein, Nikolaus
Teusink, Bas
Vilaça, Paulo
Vik, Jon Olav
Wodke, Judith A. H.
Xavier, Joana C.
Yuan, Qianqian
Zakhartsev, Maksim
Zhang, Cheng
MEMOTE for standardized genome-scale metabolic model testing
description Reconstructing metabolic reaction networks enables the development of testable hypotheses of an organism’s metabolism under different conditions1. State-of-the-art genome-scale metabolic models (GEMs) can include thousands of metabolites and reactions that are assigned to subcellular locations. Gene–protein–reaction (GPR) rules and annotations using database information can add meta-information to GEMs. GEMs with metadata can be built using standard reconstruction protocols2, and guidelines have been put in place for tracking provenance and enabling interoperability, but a standardized means of quality control for GEMs is lacking3. Here we report a community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality.
author2 Research Council of Norway
author_facet Research Council of Norway
Lieven, Christian
Beber, Moritz E.
Olivier, Brett G.
Bergmann, Frank T.
Ataman, Meric
Babaei, Parizad
Bartell, Jennifer A.
Blank, Lars M.
Chauhan, Siddharth
Correia, Kevin
Diener, Christian
Dräger, Andreas
Ebert, Birgitta E.
Edirisinghe, Janaka N.
Faria, José P.
Feist, Adam M.
Fengos, Georgios
Fleming, Ronan M. T.
García-Jiménez, Beatriz
Hatzimanikatis, Vassily
Van Helvoirt, Wout
Henry, Christopher S.
Hermjakob, Henning
Herrgård, Markus J.
Kaafarani, Ali
Kim, Hyun Uk
King, Zachary
Klamt, Steffen
Klipp, Edda
Koehorst, Jasper J.
König, Matthias
Lakshmanan, Meiyappan
Lee, Dong-Yup
Lee, Sang Yup
Lee, Sunjae
Lewis, Nathan E.
Liu, Filipe
Ma, Hongwu
Machado, Daniel
Mahadevan, Radhakrishnan
Maia, Paulo
Mardinoglu, Adil
Medlock, Gregory L.
Monk, Jonathan M.
Nielsen, Jens
Nielsen, Lars K.
Nogales, Juan
Nookaew, Intawat
Palsson, Bernhard Ø
Papin, Jason A.
Patil, Kiran R.
Poolman, Mark
Price, Nathan D.
Resendis-Antonio, Osbaldo
Richelle, Anne
Rocha, Isabel
Sánchez, Benjamín J.
Schaap, Peter J.
Malik Sheriff, Rahuman S.
Shoaie, Saeed
Sonnenschein, Nikolaus
Teusink, Bas
Vilaça, Paulo
Vik, Jon Olav
Wodke, Judith A. H.
Xavier, Joana C.
Yuan, Qianqian
Zakhartsev, Maksim
Zhang, Cheng
format carta al director
topic_facet Biochemical networks
Computational models
Software
author Lieven, Christian
Beber, Moritz E.
Olivier, Brett G.
Bergmann, Frank T.
Ataman, Meric
Babaei, Parizad
Bartell, Jennifer A.
Blank, Lars M.
Chauhan, Siddharth
Correia, Kevin
Diener, Christian
Dräger, Andreas
Ebert, Birgitta E.
Edirisinghe, Janaka N.
Faria, José P.
Feist, Adam M.
Fengos, Georgios
Fleming, Ronan M. T.
García-Jiménez, Beatriz
Hatzimanikatis, Vassily
Van Helvoirt, Wout
Henry, Christopher S.
Hermjakob, Henning
Herrgård, Markus J.
Kaafarani, Ali
Kim, Hyun Uk
King, Zachary
Klamt, Steffen
Klipp, Edda
Koehorst, Jasper J.
König, Matthias
Lakshmanan, Meiyappan
Lee, Dong-Yup
Lee, Sang Yup
Lee, Sunjae
Lewis, Nathan E.
Liu, Filipe
Ma, Hongwu
Machado, Daniel
Mahadevan, Radhakrishnan
Maia, Paulo
Mardinoglu, Adil
Medlock, Gregory L.
Monk, Jonathan M.
Nielsen, Jens
Nielsen, Lars K.
Nogales, Juan
Nookaew, Intawat
Palsson, Bernhard Ø
Papin, Jason A.
Patil, Kiran R.
Poolman, Mark
Price, Nathan D.
Resendis-Antonio, Osbaldo
Richelle, Anne
Rocha, Isabel
Sánchez, Benjamín J.
Schaap, Peter J.
Malik Sheriff, Rahuman S.
Shoaie, Saeed
Sonnenschein, Nikolaus
Teusink, Bas
Vilaça, Paulo
Vik, Jon Olav
Wodke, Judith A. H.
Xavier, Joana C.
Yuan, Qianqian
Zakhartsev, Maksim
Zhang, Cheng
author_sort Lieven, Christian
title MEMOTE for standardized genome-scale metabolic model testing
title_short MEMOTE for standardized genome-scale metabolic model testing
title_full MEMOTE for standardized genome-scale metabolic model testing
title_fullStr MEMOTE for standardized genome-scale metabolic model testing
title_full_unstemmed MEMOTE for standardized genome-scale metabolic model testing
title_sort memote for standardized genome-scale metabolic model testing
publisher Springer Nature
publishDate 2020-03
url http://hdl.handle.net/10261/230245
http://dx.doi.org/10.13039/501100000781
http://dx.doi.org/10.13039/501100002347
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100004063
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/100000057
http://dx.doi.org/10.13039/100000865
http://dx.doi.org/10.13039/501100003725
http://dx.doi.org/10.13039/501100003627
http://dx.doi.org/10.13039/501100000769
http://dx.doi.org/10.13039/100000888
http://dx.doi.org/10.13039/100001906
http://dx.doi.org/10.13039/100000002
http://dx.doi.org/10.13039/501100000780
work_keys_str_mv AT lievenchristian memoteforstandardizedgenomescalemetabolicmodeltesting
AT bebermoritze memoteforstandardizedgenomescalemetabolicmodeltesting
AT olivierbrettg memoteforstandardizedgenomescalemetabolicmodeltesting
AT bergmannfrankt memoteforstandardizedgenomescalemetabolicmodeltesting
AT atamanmeric memoteforstandardizedgenomescalemetabolicmodeltesting
AT babaeiparizad memoteforstandardizedgenomescalemetabolicmodeltesting
AT bartelljennifera memoteforstandardizedgenomescalemetabolicmodeltesting
AT blanklarsm memoteforstandardizedgenomescalemetabolicmodeltesting
AT chauhansiddharth memoteforstandardizedgenomescalemetabolicmodeltesting
AT correiakevin memoteforstandardizedgenomescalemetabolicmodeltesting
AT dienerchristian memoteforstandardizedgenomescalemetabolicmodeltesting
AT dragerandreas memoteforstandardizedgenomescalemetabolicmodeltesting
AT ebertbirgittae memoteforstandardizedgenomescalemetabolicmodeltesting
AT edirisinghejanakan memoteforstandardizedgenomescalemetabolicmodeltesting
AT fariajosep memoteforstandardizedgenomescalemetabolicmodeltesting
AT feistadamm memoteforstandardizedgenomescalemetabolicmodeltesting
AT fengosgeorgios memoteforstandardizedgenomescalemetabolicmodeltesting
AT flemingronanmt memoteforstandardizedgenomescalemetabolicmodeltesting
AT garciajimenezbeatriz memoteforstandardizedgenomescalemetabolicmodeltesting
AT hatzimanikatisvassily memoteforstandardizedgenomescalemetabolicmodeltesting
AT vanhelvoirtwout memoteforstandardizedgenomescalemetabolicmodeltesting
AT henrychristophers memoteforstandardizedgenomescalemetabolicmodeltesting
AT hermjakobhenning memoteforstandardizedgenomescalemetabolicmodeltesting
AT herrgardmarkusj memoteforstandardizedgenomescalemetabolicmodeltesting
AT kaafaraniali memoteforstandardizedgenomescalemetabolicmodeltesting
AT kimhyunuk memoteforstandardizedgenomescalemetabolicmodeltesting
AT kingzachary memoteforstandardizedgenomescalemetabolicmodeltesting
AT klamtsteffen memoteforstandardizedgenomescalemetabolicmodeltesting
AT klippedda memoteforstandardizedgenomescalemetabolicmodeltesting
AT koehorstjasperj memoteforstandardizedgenomescalemetabolicmodeltesting
AT konigmatthias memoteforstandardizedgenomescalemetabolicmodeltesting
AT lakshmananmeiyappan memoteforstandardizedgenomescalemetabolicmodeltesting
AT leedongyup memoteforstandardizedgenomescalemetabolicmodeltesting
AT leesangyup memoteforstandardizedgenomescalemetabolicmodeltesting
AT leesunjae memoteforstandardizedgenomescalemetabolicmodeltesting
AT lewisnathane memoteforstandardizedgenomescalemetabolicmodeltesting
AT liufilipe memoteforstandardizedgenomescalemetabolicmodeltesting
AT mahongwu memoteforstandardizedgenomescalemetabolicmodeltesting
AT machadodaniel memoteforstandardizedgenomescalemetabolicmodeltesting
AT mahadevanradhakrishnan memoteforstandardizedgenomescalemetabolicmodeltesting
AT maiapaulo memoteforstandardizedgenomescalemetabolicmodeltesting
AT mardinogluadil memoteforstandardizedgenomescalemetabolicmodeltesting
AT medlockgregoryl memoteforstandardizedgenomescalemetabolicmodeltesting
AT monkjonathanm memoteforstandardizedgenomescalemetabolicmodeltesting
AT nielsenjens memoteforstandardizedgenomescalemetabolicmodeltesting
AT nielsenlarsk memoteforstandardizedgenomescalemetabolicmodeltesting
AT nogalesjuan memoteforstandardizedgenomescalemetabolicmodeltesting
AT nookaewintawat memoteforstandardizedgenomescalemetabolicmodeltesting
AT palssonbernhardø memoteforstandardizedgenomescalemetabolicmodeltesting
AT papinjasona memoteforstandardizedgenomescalemetabolicmodeltesting
AT patilkiranr memoteforstandardizedgenomescalemetabolicmodeltesting
AT poolmanmark memoteforstandardizedgenomescalemetabolicmodeltesting
AT pricenathand memoteforstandardizedgenomescalemetabolicmodeltesting
AT resendisantonioosbaldo memoteforstandardizedgenomescalemetabolicmodeltesting
AT richelleanne memoteforstandardizedgenomescalemetabolicmodeltesting
AT rochaisabel memoteforstandardizedgenomescalemetabolicmodeltesting
AT sanchezbenjaminj memoteforstandardizedgenomescalemetabolicmodeltesting
AT schaappeterj memoteforstandardizedgenomescalemetabolicmodeltesting
AT maliksheriffrahumans memoteforstandardizedgenomescalemetabolicmodeltesting
AT shoaiesaeed memoteforstandardizedgenomescalemetabolicmodeltesting
AT sonnenscheinnikolaus memoteforstandardizedgenomescalemetabolicmodeltesting
AT teusinkbas memoteforstandardizedgenomescalemetabolicmodeltesting
AT vilacapaulo memoteforstandardizedgenomescalemetabolicmodeltesting
AT vikjonolav memoteforstandardizedgenomescalemetabolicmodeltesting
AT wodkejudithah memoteforstandardizedgenomescalemetabolicmodeltesting
AT xavierjoanac memoteforstandardizedgenomescalemetabolicmodeltesting
AT yuanqianqian memoteforstandardizedgenomescalemetabolicmodeltesting
AT zakhartsevmaksim memoteforstandardizedgenomescalemetabolicmodeltesting
AT zhangcheng memoteforstandardizedgenomescalemetabolicmodeltesting
_version_ 1816136056079122432
spelling dig-inia-es-10261-2302452024-10-24T13:15:29Z MEMOTE for standardized genome-scale metabolic model testing Lieven, Christian Beber, Moritz E. Olivier, Brett G. Bergmann, Frank T. Ataman, Meric Babaei, Parizad Bartell, Jennifer A. Blank, Lars M. Chauhan, Siddharth Correia, Kevin Diener, Christian Dräger, Andreas Ebert, Birgitta E. Edirisinghe, Janaka N. Faria, José P. Feist, Adam M. Fengos, Georgios Fleming, Ronan M. T. García-Jiménez, Beatriz Hatzimanikatis, Vassily Van Helvoirt, Wout Henry, Christopher S. Hermjakob, Henning Herrgård, Markus J. Kaafarani, Ali Kim, Hyun Uk King, Zachary Klamt, Steffen Klipp, Edda Koehorst, Jasper J. König, Matthias Lakshmanan, Meiyappan Lee, Dong-Yup Lee, Sang Yup Lee, Sunjae Lewis, Nathan E. Liu, Filipe Ma, Hongwu Machado, Daniel Mahadevan, Radhakrishnan Maia, Paulo Mardinoglu, Adil Medlock, Gregory L. Monk, Jonathan M. Nielsen, Jens Nielsen, Lars K. Nogales, Juan Nookaew, Intawat Palsson, Bernhard Ø Papin, Jason A. Patil, Kiran R. Poolman, Mark Price, Nathan D. Resendis-Antonio, Osbaldo Richelle, Anne Rocha, Isabel Sánchez, Benjamín J. Schaap, Peter J. Malik Sheriff, Rahuman S. Shoaie, Saeed Sonnenschein, Nikolaus Teusink, Bas Vilaça, Paulo Vik, Jon Olav Wodke, Judith A. H. Xavier, Joana C. Yuan, Qianqian Zakhartsev, Maksim Zhang, Cheng Research Council of Norway Innovation Fund Denmark European Commission National Institutes of Health (US) German Research Foundation Novo Nordisk Foundation W. M. Keck Foundation Ministerio de Economía y Competitividad (España) Knut and Alice Wallenberg Foundation Federal Ministry of Education and Research (Germany) Federal Ministry of Education and Research (Germany) Bill & Melinda Gates Foundation National Research Foundation of Korea Rural Development Administration (South Korea) Swiss National Science Foundation University of Oxford European Research Council Washington Research Foundation National Institute of General Medical Sciences (US) Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72] Biochemical networks Computational models Software Reconstructing metabolic reaction networks enables the development of testable hypotheses of an organism’s metabolism under different conditions1. State-of-the-art genome-scale metabolic models (GEMs) can include thousands of metabolites and reactions that are assigned to subcellular locations. Gene–protein–reaction (GPR) rules and annotations using database information can add meta-information to GEMs. GEMs with metadata can be built using standard reconstruction protocols2, and guidelines have been put in place for tracking provenance and enabling interoperability, but a standardized means of quality control for GEMs is lacking3. Here we report a community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality. We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjánsdóttir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503). 2021-02-22T09:00:19Z 2021-02-22T09:00:19Z 2020-03 2021-02-22T09:00:19Z carta al director http://purl.org/coar/resource_type/c_545b Nature Biotechnology 38: 272-276 (2020) 1087-0156 http://hdl.handle.net/10261/230245 10.1038/s41587-020-0446-y 1546-1696 http://dx.doi.org/10.13039/501100000781 http://dx.doi.org/10.13039/501100002347 http://dx.doi.org/10.13039/501100001659 http://dx.doi.org/10.13039/501100004063 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/100000057 http://dx.doi.org/10.13039/100000865 http://dx.doi.org/10.13039/501100003725 http://dx.doi.org/10.13039/501100003627 http://dx.doi.org/10.13039/501100000769 http://dx.doi.org/10.13039/100000888 http://dx.doi.org/10.13039/100001906 http://dx.doi.org/10.13039/100000002 http://dx.doi.org/10.13039/501100000780 #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/EC/H2020/686070 info:eu-repo/grantAgreement/EC/H2020/686585 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2014-59528-JIN info:eu-repo/grantAgreement/EC/H2020/666053 http://dx.doi.org/10.1038/s41587-020-0446-y Sí none Springer Nature