Biomagnification and temporal trends (1990-2021) of perfluoroalkyl substances in striped dolphins (Stenella coeruleoalba) from the NW Mediterranean sea

Poly- and Perfluoroalkyl Substances (PFAS) are a well-known class of pollutants which can bioaccumulate and biomagnify with a vast majority being highly persistent. This study aims to determine the biomagnification rates of PFAS in sexually mature striped dolphins and to assess temporal trends on PFAS concentrations over the past three decades (1990-2021) in the North-Western Mediterranean Sea. Thirteen and 17 of the 19 targeted PFAS were detected in the samples of the dolphins' digestive content and liver, respectively, at concentrations ranging between 43 and 1609 ng/g wet weight, and 254 and 7010 ng/g wet weight, respectively. The most abundant compounds in both types of samples were linear perfluorooctanesulfonic acid (n-PFOS) and perfluorooctanesulfonamide (FOSA), which were present in all samples, followed by perfluoroundecanoic acid (PFUnDA), perfluorotridecanoic acid (PFTrDA) and perfluorononanoic acid (PFNA). Long-chain PFAS (i.e., PFCAs C ≥ 7 and PFSAs C ≥ 6) biomagnified to a greater extent than short-chain PFAS, suggesting a potential effect on the health of striped dolphins. Environmental Quality Standards concentrations set in 2014 by the European Union were exceeded in half of the samples of digestive content, suggesting that polluted prey may pose potential health risks for striped dolphins. Concentrations of most long-chain PFAS increased from 1990 to 2004-2009, then stabilized during 2014-2021, possibly following country regulations and industrial initiatives. The current study highlights the persistent presence of banned PFAS and may contribute to future ecological risk assessments and the design of management strategies to mitigate PFAS pollution in marine ecosystems.

Saved in:
Bibliographic Details
Main Authors: Garcia-Garin, Odei, Borrell, Asunción, Colomer-Vidal, Pere, Vighi, Morgana, Trilla-Prieto, Núria, Aguilar, Alex, Gazo, Manel, Jiménez, Begoña
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Language:English
Published: Elsevier 2023-10-12
Subjects:Pollution, Cetaceans, PFAS, PFOA, PFOS, POPs, http://metadata.un.org/sdg/6, Ensure availability and sustainable management of water and sanitation for all,
Online Access:http://hdl.handle.net/10261/337715
http://dx.doi.org/10.13039/501100004837
https://api.elsevier.com/content/abstract/scopus_id/85174198196
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly- and Perfluoroalkyl Substances (PFAS) are a well-known class of pollutants which can bioaccumulate and biomagnify with a vast majority being highly persistent. This study aims to determine the biomagnification rates of PFAS in sexually mature striped dolphins and to assess temporal trends on PFAS concentrations over the past three decades (1990-2021) in the North-Western Mediterranean Sea. Thirteen and 17 of the 19 targeted PFAS were detected in the samples of the dolphins' digestive content and liver, respectively, at concentrations ranging between 43 and 1609 ng/g wet weight, and 254 and 7010 ng/g wet weight, respectively. The most abundant compounds in both types of samples were linear perfluorooctanesulfonic acid (n-PFOS) and perfluorooctanesulfonamide (FOSA), which were present in all samples, followed by perfluoroundecanoic acid (PFUnDA), perfluorotridecanoic acid (PFTrDA) and perfluorononanoic acid (PFNA). Long-chain PFAS (i.e., PFCAs C ≥ 7 and PFSAs C ≥ 6) biomagnified to a greater extent than short-chain PFAS, suggesting a potential effect on the health of striped dolphins. Environmental Quality Standards concentrations set in 2014 by the European Union were exceeded in half of the samples of digestive content, suggesting that polluted prey may pose potential health risks for striped dolphins. Concentrations of most long-chain PFAS increased from 1990 to 2004-2009, then stabilized during 2014-2021, possibly following country regulations and industrial initiatives. The current study highlights the persistent presence of banned PFAS and may contribute to future ecological risk assessments and the design of management strategies to mitigate PFAS pollution in marine ecosystems.