New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities

In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O 3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. However, N should be measured since ultrafine particles (<100 nm) may have large impacts on human health. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach for air quality monitoring. BC is mostly governed by vehicle exhaust emissions, while PM10 concentrations at these sites are also governed by non-exhaust particulate emissions resuspended by traffic, by midday atmospheric dilution and by other non-traffic emissions. © 2011 Author(s).

Saved in:
Bibliographic Details
Main Authors: Reche, Cristina, Querol, Xavier, Alastuey, Andrés, Viana, Mar, Pey, Jorge, Moreno, Teresa, Rodríguez, S., González, Y., Fernández-Camacho, R., De La Campa, A.M.S., De La Rosa, Jesús D., Dall'Osto, Manuel, Prévôt, André S. H., Hueglin, C., Harrison, Roy M., Quincey, P.
Format: artículo biblioteca
Published: European Geophysical Society 2011
Online Access:http://hdl.handle.net/10261/217600
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-idaea-es-10261-217600
record_format koha
institution IDAEA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-idaea-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IDAEA España
description In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O 3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. However, N should be measured since ultrafine particles (<100 nm) may have large impacts on human health. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach for air quality monitoring. BC is mostly governed by vehicle exhaust emissions, while PM10 concentrations at these sites are also governed by non-exhaust particulate emissions resuspended by traffic, by midday atmospheric dilution and by other non-traffic emissions. © 2011 Author(s).
format artículo
author Reche, Cristina
Querol, Xavier
Alastuey, Andrés
Viana, Mar
Pey, Jorge
Moreno, Teresa
Rodríguez, S.
González, Y.
Fernández-Camacho, R.
De La Campa, A.M.S.
De La Rosa, Jesús D.
Dall'Osto, Manuel
Prévôt, André S. H.
Hueglin, C.
Harrison, Roy M.
Quincey, P.
spellingShingle Reche, Cristina
Querol, Xavier
Alastuey, Andrés
Viana, Mar
Pey, Jorge
Moreno, Teresa
Rodríguez, S.
González, Y.
Fernández-Camacho, R.
De La Campa, A.M.S.
De La Rosa, Jesús D.
Dall'Osto, Manuel
Prévôt, André S. H.
Hueglin, C.
Harrison, Roy M.
Quincey, P.
New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities
author_facet Reche, Cristina
Querol, Xavier
Alastuey, Andrés
Viana, Mar
Pey, Jorge
Moreno, Teresa
Rodríguez, S.
González, Y.
Fernández-Camacho, R.
De La Campa, A.M.S.
De La Rosa, Jesús D.
Dall'Osto, Manuel
Prévôt, André S. H.
Hueglin, C.
Harrison, Roy M.
Quincey, P.
author_sort Reche, Cristina
title New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities
title_short New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities
title_full New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities
title_fullStr New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities
title_full_unstemmed New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities
title_sort new considerations for pm, black carbon and particle number concentration for air quality monitoring across different european cities
publisher European Geophysical Society
publishDate 2011
url http://hdl.handle.net/10261/217600
work_keys_str_mv AT rechecristina newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT querolxavier newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT alastueyandres newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT vianamar newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT peyjorge newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT morenoteresa newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT rodriguezs newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT gonzalezy newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT fernandezcamachor newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT delacampaams newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT delarosajesusd newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT dallostomanuel newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT prevotandresh newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT hueglinc newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT harrisonroym newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
AT quinceyp newconsiderationsforpmblackcarbonandparticlenumberconcentrationforairqualitymonitoringacrossdifferenteuropeancities
_version_ 1777669447362805760
spelling dig-idaea-es-10261-2176002021-07-22T09:06:19Z New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities Reche, Cristina Querol, Xavier Alastuey, Andrés Viana, Mar Pey, Jorge Moreno, Teresa Rodríguez, S. González, Y. Fernández-Camacho, R. De La Campa, A.M.S. De La Rosa, Jesús D. Dall'Osto, Manuel Prévôt, André S. H. Hueglin, C. Harrison, Roy M. Quincey, P. In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O 3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. However, N should be measured since ultrafine particles (<100 nm) may have large impacts on human health. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach for air quality monitoring. BC is mostly governed by vehicle exhaust emissions, while PM10 concentrations at these sites are also governed by non-exhaust particulate emissions resuspended by traffic, by midday atmospheric dilution and by other non-traffic emissions. © 2011 Author(s). 2020-08-07T09:41:04Z 2020-08-07T09:41:04Z 2011 2020-08-07T09:41:04Z artículo http://purl.org/coar/resource_type/c_6501 doi: 10.5194/acp-11-6207-2011 issn: 1680-7316 Atmospheric Chemistry and Physics 11: 6207- 6227 (2011) http://hdl.handle.net/10261/217600 10.5194/acp-11-6207-2011 Publisher's version http://dx.doi.org/10.5194/acp-11-6207-2011 Sí open European Geophysical Society