Hydroxytyrosyl ethyl ether exhibits stronger intestinal anticarcinogenic potency and effects on transcript profiles compared to hydroxytyrosol
The anticarcinogenic activity of hydroxytyrosyl ethyl ether (HTy-Et) compared to its precursor hydroxytyrosol (HTy) has been studied in human Caco-2 colon adenocarcinoma cells. 451 and 977 genes were differentially expressed in Caco-2 cells exposed to HTy or HTy-Et for 24 h, respectively, compared with untreated cells (P < 0.005; FDR = 0), using Affymetrix microarrays. Results showed that both HTy and HTy-Et inhibited cell proliferation and arrested the cell cycle by up-regulating p21 and CCNG2 and down-regulating CCNB1 protein expression. HTy and HTy-Et also altered the transcription of specific genes involved in apoptosis, as suggested by the up-regulation of BNIP3, BNIP3L, PDCD4 and ATF3 and the activation of caspase-3. Moreover, these polyphenols up-regulated xenobiotic metabolizing enzymes UGT1A10 and CYP1A1, enhancing carcinogen detoxification. In conclusion, these results highlight that HTy and its derivative HTy-Et modulate molecular mechanisms involved in colon cancer, with HTy-Et being more effective than HTy. © 2012 Elsevier Ltd. All rights reserved.
Main Authors: | , , , , , , |
---|---|
Format: | artículo biblioteca |
Language: | English |
Published: |
Elsevier
2013
|
Online Access: | http://hdl.handle.net/10261/74909 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anticarcinogenic activity of hydroxytyrosyl ethyl ether (HTy-Et) compared to its precursor hydroxytyrosol (HTy) has been studied in human Caco-2 colon adenocarcinoma cells. 451 and 977 genes were differentially expressed in Caco-2 cells exposed to HTy or HTy-Et for 24 h, respectively, compared with untreated cells (P < 0.005; FDR = 0), using Affymetrix microarrays. Results showed that both HTy and HTy-Et inhibited cell proliferation and arrested the cell cycle by up-regulating p21 and CCNG2 and down-regulating CCNB1 protein expression. HTy and HTy-Et also altered the transcription of specific genes involved in apoptosis, as suggested by the up-regulation of BNIP3, BNIP3L, PDCD4 and ATF3 and the activation of caspase-3. Moreover, these polyphenols up-regulated xenobiotic metabolizing enzymes UGT1A10 and CYP1A1, enhancing carcinogen detoxification. In conclusion, these results highlight that HTy and its derivative HTy-Et modulate molecular mechanisms involved in colon cancer, with HTy-Et being more effective than HTy. © 2012 Elsevier Ltd. All rights reserved. |
---|