Iron status biomarkers and cardiovascular risk
Both iron excess and deficiency may be related to oxidative stress. Serum ferritin, the main marker of iron status, and hepcidin, the key regulator of iron metabolism, are increased in inflammation states and their links with insulin resistance are emerging topics. We have reviewed the role of iron deficiency/overload in cardiovascular risk, including our own results. Most studies deal with the association between iron deposition in tissues and cardiovascular risk, while decreased iron status is predominantly related to protection against atherosclerosis and coronary heart disease. Less information is available on the role of iron status in type 2 diabetes mellitus (T2DM). Serum ferritin is positively correlated with several indicators of cardiovascular risk in healthy adults and diabetics, thus excess body iron is related to cardiometabolic alterations including vascular and heart damage, central obesity, and metabolic syndrome. Our data in an ample sample of T2DM adults suggest that body iron stores, evaluated as ferritin, are clearly related with some key markers of the so-called lipidic triad (high triglyceride and low high-density lipoprotein (HDL) cholesterol) levels together with the presence of small and dense low-density lipoprotein particles which also is in the frame of the dysmetabolic iron overload syndrome.
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | capítulo de libro biblioteca |
Published: |
InTech
2017
|
Subjects: | Iron overload, Human, Dysmetabolic iron overload syndrome, Biomarkers, Lipidic triad, Type 2 diabetes Mellitus, Insulin, Ferritin, Iron, Cardiovascular diseases, Iron deficiency, Oxidative stress, Hepcidin, |
Online Access: | http://hdl.handle.net/10261/172596 http://dx.doi.org/10.13039/501100003329 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Both iron excess and deficiency may be related to oxidative stress. Serum ferritin, the main marker of iron status, and hepcidin, the key regulator of iron metabolism, are increased in inflammation states and their links with insulin resistance are emerging topics. We have reviewed the role of iron deficiency/overload in cardiovascular risk, including our own results. Most studies deal with the association between iron deposition in tissues and cardiovascular risk, while decreased iron status is predominantly related to protection against atherosclerosis and coronary heart disease. Less information is available on the role of iron status in type 2 diabetes mellitus (T2DM). Serum ferritin is positively correlated with several indicators of cardiovascular risk in healthy adults and diabetics, thus excess body iron is related to cardiometabolic alterations including vascular and heart damage, central obesity, and metabolic syndrome. Our data in an ample sample of T2DM adults suggest that body iron stores, evaluated as ferritin, are clearly related with some key markers of the so-called lipidic triad (high triglyceride and low high-density lipoprotein (HDL) cholesterol) levels together with the presence of small and dense low-density lipoprotein particles which also is in the frame of the dysmetabolic iron overload syndrome. |
---|