AI routines for automated species classification and tracking by mobile crawler platform

2 pages, 2 figures

Saved in:
Bibliographic Details
Main Authors: Monte, A., Marsiske, R., Ortenzi, L., Chatzievangelou, Damianos, Costa, Corrado, Thomsen, Laurenz, Marini, Simone, Aguzzi, Jacopo
Format: artículo de periódico biblioteca
Language:English
Published: 2023-01
Online Access:http://hdl.handle.net/10261/330880
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-icm-es-10261-330880
record_format koha
spelling dig-icm-es-10261-3308802023-07-12T08:09:56Z AI routines for automated species classification and tracking by mobile crawler platform Monte, A. Marsiske, R. Ortenzi, L. Chatzievangelou, Damianos Costa, Corrado Thomsen, Laurenz Marini, Simone Aguzzi, Jacopo 2 pages, 2 figures Animal detection, classification and tracking as edge computing functionalities of mobile robotic platforms are increasingly relevant in marine ecosystem monitoring (Aguzzi et al., 2020; 2022). Time-series of geo-referenced counts for different species are crucial to train AI-based data processing algorithms. These will be executed on-board underwater robotic platforms, to deliver real-time, remote information on abundances and biodiversity. Crawlers are emerging mobile robotic platforms, either tethered to permanent infrastructures like cabled observatories, offshore industrial rigs, and mariculture assets (Danovaro et al., 2019), or moving autonomously along the seafloor for extended periods. Bearing cameras and complex sets of oceanographic and geochemical sensors, they can be used to consistently expand the radius of ecological monitoring of fixed cabled observatories by video-sweeping large seabed surfaces (Chatzievangelou et al., 2020), the benthic boundary layer (as the benthic-pelagic ecotone; Chatzievangelou et al., 2021), and the overlaying water column. Our objective is the automated, real-time image processing to classify and track multiple species, opening the pathway toward the creation of crawler on-board video-intelligence. Accordingly, manual classification of animals in videos acquired by the crawler Wally at the Barkley Canyon hydrates (900 m depth; NE Pacific) site of Ocean Networks Canada’s NEPTUNE observatory is ongoing, as a necessary step to create groundtruth datasets to train AI algorithms. Examples of key species (Figure 1) and AI tracking and classification (Figure 2) are provided Peer reviewed 2023-07-12T08:09:21Z 2023-07-12T08:09:21Z 2023-01 artículo de periódico Deep-Sea Life 20: 8-9 (2023) http://hdl.handle.net/10261/330880 en Sí none
institution ICM ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-icm-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del ICM España
language English
description 2 pages, 2 figures
format artículo de periódico
author Monte, A.
Marsiske, R.
Ortenzi, L.
Chatzievangelou, Damianos
Costa, Corrado
Thomsen, Laurenz
Marini, Simone
Aguzzi, Jacopo
spellingShingle Monte, A.
Marsiske, R.
Ortenzi, L.
Chatzievangelou, Damianos
Costa, Corrado
Thomsen, Laurenz
Marini, Simone
Aguzzi, Jacopo
AI routines for automated species classification and tracking by mobile crawler platform
author_facet Monte, A.
Marsiske, R.
Ortenzi, L.
Chatzievangelou, Damianos
Costa, Corrado
Thomsen, Laurenz
Marini, Simone
Aguzzi, Jacopo
author_sort Monte, A.
title AI routines for automated species classification and tracking by mobile crawler platform
title_short AI routines for automated species classification and tracking by mobile crawler platform
title_full AI routines for automated species classification and tracking by mobile crawler platform
title_fullStr AI routines for automated species classification and tracking by mobile crawler platform
title_full_unstemmed AI routines for automated species classification and tracking by mobile crawler platform
title_sort ai routines for automated species classification and tracking by mobile crawler platform
publishDate 2023-01
url http://hdl.handle.net/10261/330880
work_keys_str_mv AT montea airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT marsisker airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT ortenzil airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT chatzievangeloudamianos airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT costacorrado airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT thomsenlaurenz airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT marinisimone airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
AT aguzzijacopo airoutinesforautomatedspeciesclassificationandtrackingbymobilecrawlerplatform
_version_ 1777667990320316416