Evolution of a histone variant involved in compartmental regulation of NAD metabolism

NAD metabolism is essential for all forms of life. Compartmental regulation of NAD consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications.

Saved in:
Bibliographic Details
Main Authors: Guberovic, Iva, Hurtado-Bagès, Sarah, Rivera-Casas, Ciro, Knobloch, Gunnar, Malinverni, Roberto, Valero, Vanesa, Leger, Michelle M., García, Jesús, Basquin, Jerome, Gómez de Cedrón, Marta, Frigolé-Vivas, Marta, Cheema, Manjinder S., Pérez, Ainhoa, Ausió, Juan, Ramírez de Molina, Ana, Salvatella, Xavier, Ruiz-Trillo, Iñaki, Eirín-López, José María, Ladurner, Andreas G., Buschbeck, Marcus
Other Authors: Max Planck Society
Format: artículo biblioteca
Published: Nature Publishing Group 2021-12-09
Subjects:Histone variants, Metabolism, X-ray crystallography,
Online Access:http://hdl.handle.net/10261/263537
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100005774
http://dx.doi.org/10.13039/501100004189
http://dx.doi.org/10.13039/501100002809
http://dx.doi.org/10.13039/100012818
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-ibe-es-10261-263537
record_format koha
institution IBE ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-ibe-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IBE España
topic Histone variants
Metabolism
X-ray crystallography
Histone variants
Metabolism
X-ray crystallography
spellingShingle Histone variants
Metabolism
X-ray crystallography
Histone variants
Metabolism
X-ray crystallography
Guberovic, Iva
Hurtado-Bagès, Sarah
Rivera-Casas, Ciro
Knobloch, Gunnar
Malinverni, Roberto
Valero, Vanesa
Leger, Michelle M.
García, Jesús
Basquin, Jerome
Gómez de Cedrón, Marta
Frigolé-Vivas, Marta
Cheema, Manjinder S.
Pérez, Ainhoa
Ausió, Juan
Ramírez de Molina, Ana
Salvatella, Xavier
Ruiz-Trillo, Iñaki
Eirín-López, José María
Ladurner, Andreas G.
Buschbeck, Marcus
Evolution of a histone variant involved in compartmental regulation of NAD metabolism
description NAD metabolism is essential for all forms of life. Compartmental regulation of NAD consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications.
author2 Max Planck Society
author_facet Max Planck Society
Guberovic, Iva
Hurtado-Bagès, Sarah
Rivera-Casas, Ciro
Knobloch, Gunnar
Malinverni, Roberto
Valero, Vanesa
Leger, Michelle M.
García, Jesús
Basquin, Jerome
Gómez de Cedrón, Marta
Frigolé-Vivas, Marta
Cheema, Manjinder S.
Pérez, Ainhoa
Ausió, Juan
Ramírez de Molina, Ana
Salvatella, Xavier
Ruiz-Trillo, Iñaki
Eirín-López, José María
Ladurner, Andreas G.
Buschbeck, Marcus
format artículo
topic_facet Histone variants
Metabolism
X-ray crystallography
author Guberovic, Iva
Hurtado-Bagès, Sarah
Rivera-Casas, Ciro
Knobloch, Gunnar
Malinverni, Roberto
Valero, Vanesa
Leger, Michelle M.
García, Jesús
Basquin, Jerome
Gómez de Cedrón, Marta
Frigolé-Vivas, Marta
Cheema, Manjinder S.
Pérez, Ainhoa
Ausió, Juan
Ramírez de Molina, Ana
Salvatella, Xavier
Ruiz-Trillo, Iñaki
Eirín-López, José María
Ladurner, Andreas G.
Buschbeck, Marcus
author_sort Guberovic, Iva
title Evolution of a histone variant involved in compartmental regulation of NAD metabolism
title_short Evolution of a histone variant involved in compartmental regulation of NAD metabolism
title_full Evolution of a histone variant involved in compartmental regulation of NAD metabolism
title_fullStr Evolution of a histone variant involved in compartmental regulation of NAD metabolism
title_full_unstemmed Evolution of a histone variant involved in compartmental regulation of NAD metabolism
title_sort evolution of a histone variant involved in compartmental regulation of nad metabolism
publisher Nature Publishing Group
publishDate 2021-12-09
url http://hdl.handle.net/10261/263537
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100005774
http://dx.doi.org/10.13039/501100004189
http://dx.doi.org/10.13039/501100002809
http://dx.doi.org/10.13039/100012818
work_keys_str_mv AT guberoviciva evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT hurtadobagessarah evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT riveracasasciro evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT knoblochgunnar evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT malinverniroberto evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT valerovanesa evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT legermichellem evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT garciajesus evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT basquinjerome evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT gomezdecedronmarta evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT frigolevivasmarta evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT cheemamanjinders evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT perezainhoa evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT ausiojuan evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT ramirezdemolinaana evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT salvatellaxavier evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT ruiztrilloinaki evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT eirinlopezjosemaria evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT ladurnerandreasg evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
AT buschbeckmarcus evolutionofahistonevariantinvolvedincompartmentalregulationofnadmetabolism
_version_ 1777668809968058368
spelling dig-ibe-es-10261-2635372022-11-15T16:32:26Z Evolution of a histone variant involved in compartmental regulation of NAD metabolism Guberovic, Iva Hurtado-Bagès, Sarah Rivera-Casas, Ciro Knobloch, Gunnar Malinverni, Roberto Valero, Vanesa Leger, Michelle M. García, Jesús Basquin, Jerome Gómez de Cedrón, Marta Frigolé-Vivas, Marta Cheema, Manjinder S. Pérez, Ainhoa Ausió, Juan Ramírez de Molina, Ana Salvatella, Xavier Ruiz-Trillo, Iñaki Eirín-López, José María Ladurner, Andreas G. Buschbeck, Marcus Max Planck Society Universidad de Barcelona Ministerio de Economía y Competitividad (España) Comunidad de Madrid La Caixa Generalitat de Catalunya Histone variants Metabolism X-ray crystallography NAD metabolism is essential for all forms of life. Compartmental regulation of NAD consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications. For technical support, we thank the research service facilities of IJC and IGTP, the Crystallization Facility of the Max Planck Institute of Biochemistry, the ICTS NMR facility from the Scientific and Technological Centres of the University of Barcelona and Biophysics Core Facility of BMC-LMU. I.G. was a fellow of the Marie Skłodowska Curie Training network ‘ChroMe’ (H2020-MSCA-ITN-2015-675610, awarded to M.B. and A.G.L.). The project was further supported by national grants (nos. RTI2018-094005-B-I00 and BFU2015-66559-P from FEDER/Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación to M.B.). Research in the participating labs was further supported by the following grants: the Marie Skłodowska Curie Training network ‘INTERCEPT-MDS’ no. H2020-MSCA-ITN-2020-953407 (to M.B.), MINECO-ISCIII no. PIE16/00011 (to M.B.); the Deutsche José Carreras Leukämie Stiftung DJCLS (no. 14R/2018 to M.B.), AGAUR (no. 2017-SGR-305 to M.B.), Fundació La Marató de TV3 (no. 257/C/2019 to M.B.), German Research Foundation Project (ID 213249687—SFB 1064 and Project ID 325871075—SFB 1309 to A.G.L.), the Spanish Ministry of Science (PID2019-110183RB-C21 to A.R.M.), Community of Madrid (P2018/BAA-4343-ALIBIRD2020-CM to A.R.M), Ramón Areces Foundation (to A.R.M.), National Science Foundation (EF-1921402 to J.M.E.L.), 2015 International Doctoral Fellowship La Caixa-Severo Ochoa (to M.F.V.), Marie Skłodowska-Curie Individual Fellowship (no. 747789 to M.M.L.), Juan de la Cierva-Incorporación (IJC2018-036657-I to M.M.L., ERC-2012-CoG-616960 to I.R.T.), MINECO (BFU2017-90114-P to I.R.T.), AGAUR (2017-SGR-324 to X.S.) and MINECO (BIO2015-70092-R and ERC-2014-CoG-648201 to X.S.). Research at the IJC is supported by the ‘La Caixa’ Foundation, Fundació Internacional Josep Carreras, Celgene Spain and the CERCA Programme/Generalitat de Catalunya. 2022-03-09T13:40:02Z 2022-03-09T13:40:02Z 2021-12-09 2022-03-09T13:40:03Z artículo http://purl.org/coar/resource_type/c_6501 doi: 10.1038/s41594-021-00692-5 issn: 1545-9985 Nature Structural and Molecular Biology 28: 1009-1019 (2021) http://hdl.handle.net/10261/263537 10.1038/s41594-021-00692-5 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100005774 http://dx.doi.org/10.13039/501100004189 http://dx.doi.org/10.13039/501100002809 http://dx.doi.org/10.13039/100012818 #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110183RB-C21/ES/DESARROLLO DE FORMULAS ALIMENTARIAS DE PRECISION DIRIGIDAS AL TRATAMIENTO DEL CANCER DE COLON: DISEÑO Y VALIDACION/ info:eu-repo/grantAgreement/EC/H2020/675610 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094005-B-I00/ES/REGULACION DE LA ARQUITECTURA TRIDIMENSIONAL DE LA CROMATINA POR PARTE DE LAS VARIANTES DE HISTONA MACROH2A Y SU CAPACIDAD DE UNIR METABOLITOS/ http://doi.org/10.1038/s41594-021-00692-5 Sí none Nature Publishing Group