Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia

Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined.

Saved in:
Bibliographic Details
Main Authors: Macía, Javier, Manzoni, Romilde, Conde-Pueyo, Núria, Urrios, Arturo, Nadal, Eulàlia de, Solé, Ricard V., Posas, Francesc
Other Authors: European Commission
Format: artículo biblioteca
Language:English
Published: Public Library of Science 2016-02-01
Online Access:http://hdl.handle.net/10261/151818
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100000781
http://dx.doi.org/10.13039/501100006373
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100002809
http://dx.doi.org/10.13039/501100003043
http://dx.doi.org/10.13039/501100003741
http://dx.doi.org/10.13039/100010784
http://dx.doi.org/10.13039/100011419
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-ibe-es-10261-151818
record_format koha
institution IBE ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-ibe-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IBE España
language English
description Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined.
author2 European Commission
author_facet European Commission
Macía, Javier
Manzoni, Romilde
Conde-Pueyo, Núria
Urrios, Arturo
Nadal, Eulàlia de
Solé, Ricard V.
Posas, Francesc
format artículo
author Macía, Javier
Manzoni, Romilde
Conde-Pueyo, Núria
Urrios, Arturo
Nadal, Eulàlia de
Solé, Ricard V.
Posas, Francesc
spellingShingle Macía, Javier
Manzoni, Romilde
Conde-Pueyo, Núria
Urrios, Arturo
Nadal, Eulàlia de
Solé, Ricard V.
Posas, Francesc
Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia
author_sort Macía, Javier
title Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia
title_short Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia
title_full Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia
title_fullStr Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia
title_full_unstemmed Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia
title_sort implementation of complex biological logic circuits using spatially distributed multicellular consortia
publisher Public Library of Science
publishDate 2016-02-01
url http://hdl.handle.net/10261/151818
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100000781
http://dx.doi.org/10.13039/501100006373
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100002809
http://dx.doi.org/10.13039/501100003043
http://dx.doi.org/10.13039/501100003741
http://dx.doi.org/10.13039/100010784
http://dx.doi.org/10.13039/100011419
work_keys_str_mv AT maciajavier implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
AT manzoniromilde implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
AT condepueyonuria implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
AT urriosarturo implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
AT nadaleulaliade implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
AT solericardv implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
AT posasfrancesc implementationofcomplexbiologicallogiccircuitsusingspatiallydistributedmulticellularconsortia
_version_ 1777668668806660096
spelling dig-ibe-es-10261-1518182021-12-28T16:20:39Z Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia Macía, Javier Manzoni, Romilde Conde-Pueyo, Núria Urrios, Arturo Nadal, Eulàlia de Solé, Ricard V. Posas, Francesc European Commission European Research Council Santa Fe Institute (US) Fundación Botín Banco Santander Ministerio de Economía y Competitividad (España) Generalitat de Catalunya Fundación "la Caixa" EMBO Institución Catalana de Investigación y Estudios Avanzados Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. [Author Summary] Synthetic biological circuits have been built for different purposes. Nevertheless, the way these devices have been designed so far present several limitations: complex genetic engineering is required to implement complex circuits, and once the parts are built, they are not reusable. We proposed to distribute the computation in several cellular consortia that are physically separated, thus ensuring implementation of circuits independently of their complexity and using reusable components with minimal genetic engineering. This approach allows an easy implementation of multicellular computing devices for secretable inputs or biosensing purposes. This work was supported by an ERC Advanced Grant Number 294294 from the EU seventh framework program (SYNCOM) to RS and FP, and the Santa Fe Institute to RS. FP and RS laboratories are also supported by Fundación Botín, by Banco Santander through its Santander Universities Global Division. The laboratory of FP and EdN is supported by grants from the Spanish Government (BFU2012-33503/ BFU2015-64437 P and FEDER to FP; BFU2014-52333-P and FEDER to EdN) and the Catalan Government (2014 SGR 599). The research leading to these results has received funding from “la Caixa” Foundation in collaboration with “Centre per a la Innovació de la Diabetis Infantil Sant Joan de Déu (CIDI)”. FP and EdN are recipients of an ICREA Acadèmia (Generalitat de Catalunya). RM was a former EMBO postdoctoral fellow. AU is a recipient of a “La Caixa” fellowship. Peer reviewed 2017-06-22T08:48:34Z 2017-06-22T08:48:34Z 2016-02-01 artículo http://purl.org/coar/resource_type/c_6501 PLoS Computational Biology 12(2): e1004685 (2016) 1553-734X http://hdl.handle.net/10261/151818 10.1371/journal.pcbi.1004685 1553-7358 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100000781 http://dx.doi.org/10.13039/501100006373 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/501100002809 http://dx.doi.org/10.13039/501100003043 http://dx.doi.org/10.13039/501100003741 http://dx.doi.org/10.13039/100010784 http://dx.doi.org/10.13039/100011419 26829588 en #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/EC/FP7/294294 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2015-64437-P info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2014-52333-P Publisher's version https://doi.org/10.1371/journal.pcbi.1004685 Sí open Public Library of Science