A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories.
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
American Society for Microbiology
2021-08-03
|
Subjects: | Yeast, Saccharomyces, Batch cultures, Metabolism, Kinetic model, |
Online Access: | http://hdl.handle.net/10261/248500 http://dx.doi.org/10.13039/501100010801 http://dx.doi.org/10.13039/501100000780 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-iata-es-10261-248500 |
---|---|
record_format |
koha |
spelling |
dig-iata-es-10261-2485002024-10-24T09:15:07Z A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation Henriques, David Minebois, Romain Mendoza, Sebastian N. Macías, Laura G. Pérez-Torrado, Roberto Barrio, Eladio Teusink, Bas Querol, Amparo Balsa-Canto, Eva Ministerio de Ciencia, Innovación y Universidades (España) European Commission Xunta de Galicia Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72] Yeast Saccharomyces Batch cultures Metabolism Kinetic model Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. This project has received funding from MCIU/AEI/FEDER, UE (grant references RTI2018-093744-B-C31, RTI2018-093744-B-C32, RTI2018-093744-B-C33, and PID2019-104113RB-I00) and Xunta de Galicia (IN607B 2020/03). R.M. was supported by an FPI grant from the Ministerio de Economía y Competitividad, Spain (reference BES-2016-078202). S.N.M. acknowledges funding from CONICYT Becas Chile grant 72180373. S.N.M. and B.T. acknowledge support from YogurtDesign, EraCoBioTech grant 053.80.733. Peer reviewed 2021-08-23T05:19:39Z 2021-08-23T05:19:39Z 2021-08-03 artículo http://purl.org/coar/resource_type/c_6501 mSystems 6(4): e00260-21 (2021) http://hdl.handle.net/10261/248500 10.1128/mSystems.00260-21 2379-5077 http://dx.doi.org/10.13039/501100010801 http://dx.doi.org/10.13039/501100000780 en #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093744-B-C31 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093744-B-C32 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093744-B-C33 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104113RB-I00 Publisher's version Sí open American Society for Microbiology |
institution |
IATA ES |
collection |
DSpace |
country |
España |
countrycode |
ES |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-iata-es |
tag |
biblioteca |
region |
Europa del Sur |
libraryname |
Biblioteca del IATA España |
language |
English |
topic |
Yeast Saccharomyces Batch cultures Metabolism Kinetic model Yeast Saccharomyces Batch cultures Metabolism Kinetic model |
spellingShingle |
Yeast Saccharomyces Batch cultures Metabolism Kinetic model Yeast Saccharomyces Batch cultures Metabolism Kinetic model Henriques, David Minebois, Romain Mendoza, Sebastian N. Macías, Laura G. Pérez-Torrado, Roberto Barrio, Eladio Teusink, Bas Querol, Amparo Balsa-Canto, Eva A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
description |
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. |
author2 |
Ministerio de Ciencia, Innovación y Universidades (España) |
author_facet |
Ministerio de Ciencia, Innovación y Universidades (España) Henriques, David Minebois, Romain Mendoza, Sebastian N. Macías, Laura G. Pérez-Torrado, Roberto Barrio, Eladio Teusink, Bas Querol, Amparo Balsa-Canto, Eva |
format |
artículo |
topic_facet |
Yeast Saccharomyces Batch cultures Metabolism Kinetic model |
author |
Henriques, David Minebois, Romain Mendoza, Sebastian N. Macías, Laura G. Pérez-Torrado, Roberto Barrio, Eladio Teusink, Bas Querol, Amparo Balsa-Canto, Eva |
author_sort |
Henriques, David |
title |
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
title_short |
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
title_full |
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
title_fullStr |
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
title_full_unstemmed |
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
title_sort |
multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation |
publisher |
American Society for Microbiology |
publishDate |
2021-08-03 |
url |
http://hdl.handle.net/10261/248500 http://dx.doi.org/10.13039/501100010801 http://dx.doi.org/10.13039/501100000780 |
work_keys_str_mv |
AT henriquesdavid amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT mineboisromain amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT mendozasebastiann amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT maciaslaurag amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT pereztorradoroberto amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT barrioeladio amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT teusinkbas amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT querolamparo amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT balsacantoeva amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT henriquesdavid multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT mineboisromain multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT mendozasebastiann multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT maciaslaurag multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT pereztorradoroberto multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT barrioeladio multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT teusinkbas multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT querolamparo multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation AT balsacantoeva multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation |
_version_ |
1816138409679257600 |