A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation

Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories.

Saved in:
Bibliographic Details
Main Authors: Henriques, David, Minebois, Romain, Mendoza, Sebastian N., Macías, Laura G., Pérez-Torrado, Roberto, Barrio, Eladio, Teusink, Bas, Querol, Amparo, Balsa-Canto, Eva
Other Authors: Ministerio de Ciencia, Innovación y Universidades (España)
Format: artículo biblioteca
Language:English
Published: American Society for Microbiology 2021-08-03
Subjects:Yeast, Saccharomyces, Batch cultures, Metabolism, Kinetic model,
Online Access:http://hdl.handle.net/10261/248500
http://dx.doi.org/10.13039/501100010801
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-iata-es-10261-248500
record_format koha
spelling dig-iata-es-10261-2485002024-10-24T09:15:07Z A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation Henriques, David Minebois, Romain Mendoza, Sebastian N. Macías, Laura G. Pérez-Torrado, Roberto Barrio, Eladio Teusink, Bas Querol, Amparo Balsa-Canto, Eva Ministerio de Ciencia, Innovación y Universidades (España) European Commission Xunta de Galicia Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72] Yeast Saccharomyces Batch cultures Metabolism Kinetic model Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. This project has received funding from MCIU/AEI/FEDER, UE (grant references RTI2018-093744-B-C31, RTI2018-093744-B-C32, RTI2018-093744-B-C33, and PID2019-104113RB-I00) and Xunta de Galicia (IN607B 2020/03). R.M. was supported by an FPI grant from the Ministerio de Economía y Competitividad, Spain (reference BES-2016-078202). S.N.M. acknowledges funding from CONICYT Becas Chile grant 72180373. S.N.M. and B.T. acknowledge support from YogurtDesign, EraCoBioTech grant 053.80.733. Peer reviewed 2021-08-23T05:19:39Z 2021-08-23T05:19:39Z 2021-08-03 artículo http://purl.org/coar/resource_type/c_6501 mSystems 6(4): e00260-21 (2021) http://hdl.handle.net/10261/248500 10.1128/mSystems.00260-21 2379-5077 http://dx.doi.org/10.13039/501100010801 http://dx.doi.org/10.13039/501100000780 en #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093744-B-C31 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093744-B-C32 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093744-B-C33 info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104113RB-I00 Publisher's version Sí open American Society for Microbiology
institution IATA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-iata-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IATA España
language English
topic Yeast
Saccharomyces
Batch cultures
Metabolism
Kinetic model
Yeast
Saccharomyces
Batch cultures
Metabolism
Kinetic model
spellingShingle Yeast
Saccharomyces
Batch cultures
Metabolism
Kinetic model
Yeast
Saccharomyces
Batch cultures
Metabolism
Kinetic model
Henriques, David
Minebois, Romain
Mendoza, Sebastian N.
Macías, Laura G.
Pérez-Torrado, Roberto
Barrio, Eladio
Teusink, Bas
Querol, Amparo
Balsa-Canto, Eva
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
description Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories.
author2 Ministerio de Ciencia, Innovación y Universidades (España)
author_facet Ministerio de Ciencia, Innovación y Universidades (España)
Henriques, David
Minebois, Romain
Mendoza, Sebastian N.
Macías, Laura G.
Pérez-Torrado, Roberto
Barrio, Eladio
Teusink, Bas
Querol, Amparo
Balsa-Canto, Eva
format artículo
topic_facet Yeast
Saccharomyces
Batch cultures
Metabolism
Kinetic model
author Henriques, David
Minebois, Romain
Mendoza, Sebastian N.
Macías, Laura G.
Pérez-Torrado, Roberto
Barrio, Eladio
Teusink, Bas
Querol, Amparo
Balsa-Canto, Eva
author_sort Henriques, David
title A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
title_short A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
title_full A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
title_fullStr A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
title_full_unstemmed A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
title_sort multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
publisher American Society for Microbiology
publishDate 2021-08-03
url http://hdl.handle.net/10261/248500
http://dx.doi.org/10.13039/501100010801
http://dx.doi.org/10.13039/501100000780
work_keys_str_mv AT henriquesdavid amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT mineboisromain amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT mendozasebastiann amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT maciaslaurag amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT pereztorradoroberto amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT barrioeladio amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT teusinkbas amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT querolamparo amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT balsacantoeva amultiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT henriquesdavid multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT mineboisromain multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT mendozasebastiann multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT maciaslaurag multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT pereztorradoroberto multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT barrioeladio multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT teusinkbas multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT querolamparo multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
AT balsacantoeva multiphasemultiobjectivedynamicgenomescalemodelshowsdifferentredoxbalancingamongyeastspeciesofthesaccharomycesgenusinfermentation
_version_ 1816138409679257600