Lipid composition and dynamics during breadmaking in heat-moisture-treated associated matrices

The use of fruits, legumes, and ancient grains for bread-making applications is receiving particular attention, since they involve nutrient dense grains with proven health-promoting attributes. Dilution by 34% of the basic wheat flour matrix by accumulative ternary addition of heat-moisture-treated teff, chestnut, and chickpea flours did significantly impact both the extractability and the distribution of lipid subfractions in composite flours, doughs, and breads, and induced dynamics in lipid binding over mixing, fermentation, and baking steps. A preferential covalent lipid binding to the inside part of the starch granules takes place sequentially during bread-making steps at the expenses of both accessible free lipids and lipids initially bound non-covalently to the gluten/non-gluten proteins and to the outside part of the starch granules. Larger accumulation of starch lipids over mixing encompassed smaller extent of starch hydrolysis in fresh breads and smaller slowly digestible starch formation, while higher increase of starch lipids after fermentation and baking led to a bigger extent of starch digestibility and to a more prominent formation of slowly digestible starch fraction but to lower volume in fresh breads. Extensive binding of either protein bounded lipids or free lipids over fermentation and baking provided breads with promoted specific volume and anti-radical activity and slower retrogradation kinetics on ageing, respectively.

Saved in:
Bibliographic Details
Main Authors: Collar, Concha, Armero, Enrique
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Language:English
Published: Springer Nature 2019-09-10
Subjects:Lipid composition, Lipid dynamics, Composite breads, Heat-moisture treatment,
Online Access:http://hdl.handle.net/10261/198231
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items