The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana

One of the main outcomes of quantitative genetics approaches to natural variation is to reveal the genetic architecture underlying the phenotypic space. Complex genetic architectures are described as including numerous loci (or alleles) with small-effect and/or low-frequency in the populations, interactions with the genetic background, environment or age. Linkage or association mapping strategies will be more or less sensitive to this complexity, so that we still have an unclear picture of its extent. By combining high-throughput phenotyping under two environmental conditions with classical QTL mapping approaches in multiple Arabidopsis thaliana segregating populations as well as advanced near isogenic lines construction and survey, we have attempted to improve our understanding of quantitative phenotypic variation. Integrative traits such as those related to vegetative growth used in this work (highlighting either cumulative growth, growth rate or morphology) all showed complex and dynamic genetic architecture with respect to the segregating population and condition. The more resolutive our mapping approach, the more complexity we uncover, with several instances of QTLs visible in near isogenic lines but not detected with the initial QTL mapping, indicating that our phenotyping accuracy was less limiting than the mapping resolution with respect to the underlying genetic architecture. In an ultimate approach to resolve this complexity, we intensified our phenotyping effort to target specifically a 3Mb-region known to segregate for a major quantitative trait gene, using a series of selected lines recombined every 100kb. We discovered that at least 3 other independent QTLs had remained hidden in this region, some with trait- or condition-specific effects, or opposite allelic effects. If we were to extrapolate the figures obtained on this specific region in this particular cross to the genome- and species-scale, we would predict hundreds of causative loci of detectable phenotypic effect controlling these growth-related phenotypes.

Saved in:
Bibliographic Details
Main Authors: Hanemian, Mathieu, Marchadier, Elodie, Tisne, Sébastien, Bach, Liên, Bazakos, Christos, Gilbault, Elodie, Haddadi, Parham, Virlouvet, Laetitia, Loudet, Olivier
Format: article biblioteca
Language:eng
Published: PLOS
Subjects:carte génétique, phénotype, Arabidopsis thaliana, génétique des populations, locus des caractères quantitatifs, variation génétique, variation phénotypique, génotype, locus, ségrégation, Arabidopsis, phytogénétique, http://aims.fao.org/aos/agrovoc/c_24002, http://aims.fao.org/aos/agrovoc/c_5776, http://aims.fao.org/aos/agrovoc/c_33292, http://aims.fao.org/aos/agrovoc/c_34326, http://aims.fao.org/aos/agrovoc/c_37974, http://aims.fao.org/aos/agrovoc/c_15975, http://aims.fao.org/aos/agrovoc/c_903c4959, http://aims.fao.org/aos/agrovoc/c_3225, http://aims.fao.org/aos/agrovoc/c_24869, http://aims.fao.org/aos/agrovoc/c_6947, http://aims.fao.org/aos/agrovoc/c_33291, http://aims.fao.org/aos/agrovoc/c_49985, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/605013/
http://agritrop.cirad.fr/605013/1/605013.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-605013
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic carte génétique
phénotype
Arabidopsis thaliana
génétique des populations
locus des caractères quantitatifs
variation génétique
variation phénotypique
génotype
locus
ségrégation
Arabidopsis
phytogénétique
http://aims.fao.org/aos/agrovoc/c_24002
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_33292
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_37974
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_903c4959
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_24869
http://aims.fao.org/aos/agrovoc/c_6947
http://aims.fao.org/aos/agrovoc/c_33291
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_3081
carte génétique
phénotype
Arabidopsis thaliana
génétique des populations
locus des caractères quantitatifs
variation génétique
variation phénotypique
génotype
locus
ségrégation
Arabidopsis
phytogénétique
http://aims.fao.org/aos/agrovoc/c_24002
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_33292
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_37974
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_903c4959
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_24869
http://aims.fao.org/aos/agrovoc/c_6947
http://aims.fao.org/aos/agrovoc/c_33291
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_3081
spellingShingle carte génétique
phénotype
Arabidopsis thaliana
génétique des populations
locus des caractères quantitatifs
variation génétique
variation phénotypique
génotype
locus
ségrégation
Arabidopsis
phytogénétique
http://aims.fao.org/aos/agrovoc/c_24002
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_33292
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_37974
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_903c4959
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_24869
http://aims.fao.org/aos/agrovoc/c_6947
http://aims.fao.org/aos/agrovoc/c_33291
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_3081
carte génétique
phénotype
Arabidopsis thaliana
génétique des populations
locus des caractères quantitatifs
variation génétique
variation phénotypique
génotype
locus
ségrégation
Arabidopsis
phytogénétique
http://aims.fao.org/aos/agrovoc/c_24002
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_33292
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_37974
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_903c4959
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_24869
http://aims.fao.org/aos/agrovoc/c_6947
http://aims.fao.org/aos/agrovoc/c_33291
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_3081
Hanemian, Mathieu
Marchadier, Elodie
Tisne, Sébastien
Bach, Liên
Bazakos, Christos
Gilbault, Elodie
Haddadi, Parham
Virlouvet, Laetitia
Loudet, Olivier
The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
description One of the main outcomes of quantitative genetics approaches to natural variation is to reveal the genetic architecture underlying the phenotypic space. Complex genetic architectures are described as including numerous loci (or alleles) with small-effect and/or low-frequency in the populations, interactions with the genetic background, environment or age. Linkage or association mapping strategies will be more or less sensitive to this complexity, so that we still have an unclear picture of its extent. By combining high-throughput phenotyping under two environmental conditions with classical QTL mapping approaches in multiple Arabidopsis thaliana segregating populations as well as advanced near isogenic lines construction and survey, we have attempted to improve our understanding of quantitative phenotypic variation. Integrative traits such as those related to vegetative growth used in this work (highlighting either cumulative growth, growth rate or morphology) all showed complex and dynamic genetic architecture with respect to the segregating population and condition. The more resolutive our mapping approach, the more complexity we uncover, with several instances of QTLs visible in near isogenic lines but not detected with the initial QTL mapping, indicating that our phenotyping accuracy was less limiting than the mapping resolution with respect to the underlying genetic architecture. In an ultimate approach to resolve this complexity, we intensified our phenotyping effort to target specifically a 3Mb-region known to segregate for a major quantitative trait gene, using a series of selected lines recombined every 100kb. We discovered that at least 3 other independent QTLs had remained hidden in this region, some with trait- or condition-specific effects, or opposite allelic effects. If we were to extrapolate the figures obtained on this specific region in this particular cross to the genome- and species-scale, we would predict hundreds of causative loci of detectable phenotypic effect controlling these growth-related phenotypes.
format article
topic_facet carte génétique
phénotype
Arabidopsis thaliana
génétique des populations
locus des caractères quantitatifs
variation génétique
variation phénotypique
génotype
locus
ségrégation
Arabidopsis
phytogénétique
http://aims.fao.org/aos/agrovoc/c_24002
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_33292
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_37974
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_903c4959
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_24869
http://aims.fao.org/aos/agrovoc/c_6947
http://aims.fao.org/aos/agrovoc/c_33291
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_3081
author Hanemian, Mathieu
Marchadier, Elodie
Tisne, Sébastien
Bach, Liên
Bazakos, Christos
Gilbault, Elodie
Haddadi, Parham
Virlouvet, Laetitia
Loudet, Olivier
author_facet Hanemian, Mathieu
Marchadier, Elodie
Tisne, Sébastien
Bach, Liên
Bazakos, Christos
Gilbault, Elodie
Haddadi, Parham
Virlouvet, Laetitia
Loudet, Olivier
author_sort Hanemian, Mathieu
title The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
title_short The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
title_full The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
title_fullStr The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
title_full_unstemmed The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana
title_sort complex genetic architecture of shoot growth natural variation in arabidopsis thaliana
publisher PLOS
url http://agritrop.cirad.fr/605013/
http://agritrop.cirad.fr/605013/1/605013.pdf
work_keys_str_mv AT hanemianmathieu thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT marchadierelodie thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT tisnesebastien thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT bachlien thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT bazakoschristos thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT gilbaultelodie thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT haddadiparham thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT virlouvetlaetitia thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT loudetolivier thecomplexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT hanemianmathieu complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT marchadierelodie complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT tisnesebastien complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT bachlien complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT bazakoschristos complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT gilbaultelodie complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT haddadiparham complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT virlouvetlaetitia complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
AT loudetolivier complexgeneticarchitectureofshootgrowthnaturalvariationinarabidopsisthaliana
_version_ 1819044858661175296
spelling dig-cirad-fr-6050132024-12-19T12:33:00Z http://agritrop.cirad.fr/605013/ http://agritrop.cirad.fr/605013/ The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana. Hanemian Mathieu, Marchadier Elodie, Tisne Sébastien, Bach Liên, Bazakos Christos, Gilbault Elodie, Haddadi Parham, Virlouvet Laetitia, Loudet Olivier. 2019. PLoS Genetics, 15 (4):e1007954, 17 p.https://doi.org/10.1371/journal.pgen.1007954 <https://doi.org/10.1371/journal.pgen.1007954> The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana Hanemian, Mathieu Marchadier, Elodie Tisne, Sébastien Bach, Liên Bazakos, Christos Gilbault, Elodie Haddadi, Parham Virlouvet, Laetitia Loudet, Olivier eng 2019 PLOS PLoS Genetics carte génétique phénotype Arabidopsis thaliana génétique des populations locus des caractères quantitatifs variation génétique variation phénotypique génotype locus ségrégation Arabidopsis phytogénétique http://aims.fao.org/aos/agrovoc/c_24002 http://aims.fao.org/aos/agrovoc/c_5776 http://aims.fao.org/aos/agrovoc/c_33292 http://aims.fao.org/aos/agrovoc/c_34326 http://aims.fao.org/aos/agrovoc/c_37974 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_903c4959 http://aims.fao.org/aos/agrovoc/c_3225 http://aims.fao.org/aos/agrovoc/c_24869 http://aims.fao.org/aos/agrovoc/c_6947 http://aims.fao.org/aos/agrovoc/c_33291 http://aims.fao.org/aos/agrovoc/c_49985 France http://aims.fao.org/aos/agrovoc/c_3081 One of the main outcomes of quantitative genetics approaches to natural variation is to reveal the genetic architecture underlying the phenotypic space. Complex genetic architectures are described as including numerous loci (or alleles) with small-effect and/or low-frequency in the populations, interactions with the genetic background, environment or age. Linkage or association mapping strategies will be more or less sensitive to this complexity, so that we still have an unclear picture of its extent. By combining high-throughput phenotyping under two environmental conditions with classical QTL mapping approaches in multiple Arabidopsis thaliana segregating populations as well as advanced near isogenic lines construction and survey, we have attempted to improve our understanding of quantitative phenotypic variation. Integrative traits such as those related to vegetative growth used in this work (highlighting either cumulative growth, growth rate or morphology) all showed complex and dynamic genetic architecture with respect to the segregating population and condition. The more resolutive our mapping approach, the more complexity we uncover, with several instances of QTLs visible in near isogenic lines but not detected with the initial QTL mapping, indicating that our phenotyping accuracy was less limiting than the mapping resolution with respect to the underlying genetic architecture. In an ultimate approach to resolve this complexity, we intensified our phenotyping effort to target specifically a 3Mb-region known to segregate for a major quantitative trait gene, using a series of selected lines recombined every 100kb. We discovered that at least 3 other independent QTLs had remained hidden in this region, some with trait- or condition-specific effects, or opposite allelic effects. If we were to extrapolate the figures obtained on this specific region in this particular cross to the genome- and species-scale, we would predict hundreds of causative loci of detectable phenotypic effect controlling these growth-related phenotypes. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/605013/1/605013.pdf text Cirad license info:eu-repo/semantics/openAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1371/journal.pgen.1007954 10.1371/journal.pgen.1007954 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pgen.1007954 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1371/journal.pgen.1007954 info:eu-repo/semantics/dataset/purl/https://doi.org/10.15454/OCOP9B info:eu-repo/semantics/dataset/purl/https://doi.org/10.15454/EORHL8 info:eu-repo/grantAgreement/EC//ANR-09-BLAN-0366//(FRA) 2Complex/2Complex info:eu-repo/grantAgreement/EC//ANR-10-LABX-0040//(FRA) Saclay Plant Sciences/SPS