Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes
Forest landscape restoration (FLR) commitments have been established in the past years to restore over 200 million hectares, as part of the global Bonn Challenge goal, mostly through the implementation of several different restorative practices in degraded lands, ranging from commercial tree monocultures to restoration plantings. The potential of such contrasting restorative practices to support biodiversity conservation and ecosystem services provision vary over space and time, making the monitoring of FLR programs an emerging challenge. Remote sensing techniques, together with innovative technologies for data acquisition, treatment, and analysis have proven to be strategic for planning and monitoring FLR, yet there are still important unresolved questions. Here, we evaluated the potential of multispectral orbital images of the high spatial (5 m) and spectral (12 bands) resolution VENμS microsatellite, joint project of the Israeli Space Agency and CNES, to classify the spectral behavior and diversity of six tree cover classes (savanna woodlands, old- and second-growth semi-deciduous forests, young restoration plantings, and eucalyptus and pine tree monocultures) commonly found in FLR programs in tropical regions. We assessed how these tree cover classes located in a study landscape in southeastern Brazil differ according to their spectral response (winter and summer bands, and vegetation indices), canopy variability (textural features), seasonal behavior (delta layers - difference between summer and winter vegetation indexes), and spectral diversity, and used these attributes as variables to the model. We used the Random Forest algorithm to generate the models and evaluate how the tree cover classes differ in the classification and how the variables supported the model. We achieved high values of global accuracy (91.9%) and “F1 score” (above 0.8) for all tree cover classes, in which second-growth forest presented the lowest accuracy. The textural layers, delta layers, and the spectral diversity layers were the most important attributes to discriminate among tree cover classes. We demonstrate here the potential of using VENμS or similar sensor images together with different image processing and machine learning algorithms to monitor FLR programs, allowing further remote sensing approaches and in-deep field assessments to advance evaluation of FLR benefits for nature and people. We demonstrated how the fusion of all these types of data and innovative approaches to data processing, can result in novel ways to assess restoration performance and open new avenues to upscale monitoring, bridging the gap between FLR expectations and achieved goals.
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Published: |
Elsevier
|
Subjects: | K01 - Foresterie - Considérations générales, U30 - Méthodes de recherche, restauration du paysage forestier, télédétection, conservation de la nature, forêt tropicale, imagerie multispectrale, couverture végétale, restauration couverture végétale, couvert, analyse d'image, http://aims.fao.org/aos/agrovoc/c_60067b8e, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_5092, http://aims.fao.org/aos/agrovoc/c_24904, http://aims.fao.org/aos/agrovoc/c_36765, http://aims.fao.org/aos/agrovoc/c_25409, http://aims.fao.org/aos/agrovoc/c_26815, http://aims.fao.org/aos/agrovoc/c_1262, http://aims.fao.org/aos/agrovoc/c_36762, http://aims.fao.org/aos/agrovoc/c_1070, |
Online Access: | http://agritrop.cirad.fr/603065/ http://agritrop.cirad.fr/603065/1/Haneda_2022_RSA.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-603065 |
---|---|
record_format |
koha |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
K01 - Foresterie - Considérations générales U30 - Méthodes de recherche restauration du paysage forestier télédétection conservation de la nature forêt tropicale imagerie multispectrale couverture végétale restauration couverture végétale couvert analyse d'image http://aims.fao.org/aos/agrovoc/c_60067b8e http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5092 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_26815 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_1070 K01 - Foresterie - Considérations générales U30 - Méthodes de recherche restauration du paysage forestier télédétection conservation de la nature forêt tropicale imagerie multispectrale couverture végétale restauration couverture végétale couvert analyse d'image http://aims.fao.org/aos/agrovoc/c_60067b8e http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5092 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_26815 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_1070 |
spellingShingle |
K01 - Foresterie - Considérations générales U30 - Méthodes de recherche restauration du paysage forestier télédétection conservation de la nature forêt tropicale imagerie multispectrale couverture végétale restauration couverture végétale couvert analyse d'image http://aims.fao.org/aos/agrovoc/c_60067b8e http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5092 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_26815 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_1070 K01 - Foresterie - Considérations générales U30 - Méthodes de recherche restauration du paysage forestier télédétection conservation de la nature forêt tropicale imagerie multispectrale couverture végétale restauration couverture végétale couvert analyse d'image http://aims.fao.org/aos/agrovoc/c_60067b8e http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5092 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_26815 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_1070 Eiti Haneda, Leo Brancalion, Pedro H.S. Molin, Paulo G. Pinheiro Ferreira, Matheus Silva, Carlos Alberto Torres de Almeida, Catherine Faria Resende, Angelica Brossi Santoro, Giulio Rosa, Marcos R. Guillemot, Joannès Le Maire, Guerric Feret, Jean Baptiste Alves de Almeida, Danilo Roberti Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes |
description |
Forest landscape restoration (FLR) commitments have been established in the past years to restore over 200 million hectares, as part of the global Bonn Challenge goal, mostly through the implementation of several different restorative practices in degraded lands, ranging from commercial tree monocultures to restoration plantings. The potential of such contrasting restorative practices to support biodiversity conservation and ecosystem services provision vary over space and time, making the monitoring of FLR programs an emerging challenge. Remote sensing techniques, together with innovative technologies for data acquisition, treatment, and analysis have proven to be strategic for planning and monitoring FLR, yet there are still important unresolved questions. Here, we evaluated the potential of multispectral orbital images of the high spatial (5 m) and spectral (12 bands) resolution VENμS microsatellite, joint project of the Israeli Space Agency and CNES, to classify the spectral behavior and diversity of six tree cover classes (savanna woodlands, old- and second-growth semi-deciduous forests, young restoration plantings, and eucalyptus and pine tree monocultures) commonly found in FLR programs in tropical regions. We assessed how these tree cover classes located in a study landscape in southeastern Brazil differ according to their spectral response (winter and summer bands, and vegetation indices), canopy variability (textural features), seasonal behavior (delta layers - difference between summer and winter vegetation indexes), and spectral diversity, and used these attributes as variables to the model. We used the Random Forest algorithm to generate the models and evaluate how the tree cover classes differ in the classification and how the variables supported the model. We achieved high values of global accuracy (91.9%) and “F1 score” (above 0.8) for all tree cover classes, in which second-growth forest presented the lowest accuracy. The textural layers, delta layers, and the spectral diversity layers were the most important attributes to discriminate among tree cover classes. We demonstrate here the potential of using VENμS or similar sensor images together with different image processing and machine learning algorithms to monitor FLR programs, allowing further remote sensing approaches and in-deep field assessments to advance evaluation of FLR benefits for nature and people. We demonstrated how the fusion of all these types of data and innovative approaches to data processing, can result in novel ways to assess restoration performance and open new avenues to upscale monitoring, bridging the gap between FLR expectations and achieved goals. |
format |
article |
topic_facet |
K01 - Foresterie - Considérations générales U30 - Méthodes de recherche restauration du paysage forestier télédétection conservation de la nature forêt tropicale imagerie multispectrale couverture végétale restauration couverture végétale couvert analyse d'image http://aims.fao.org/aos/agrovoc/c_60067b8e http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5092 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_26815 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_1070 |
author |
Eiti Haneda, Leo Brancalion, Pedro H.S. Molin, Paulo G. Pinheiro Ferreira, Matheus Silva, Carlos Alberto Torres de Almeida, Catherine Faria Resende, Angelica Brossi Santoro, Giulio Rosa, Marcos R. Guillemot, Joannès Le Maire, Guerric Feret, Jean Baptiste Alves de Almeida, Danilo Roberti |
author_facet |
Eiti Haneda, Leo Brancalion, Pedro H.S. Molin, Paulo G. Pinheiro Ferreira, Matheus Silva, Carlos Alberto Torres de Almeida, Catherine Faria Resende, Angelica Brossi Santoro, Giulio Rosa, Marcos R. Guillemot, Joannès Le Maire, Guerric Feret, Jean Baptiste Alves de Almeida, Danilo Roberti |
author_sort |
Eiti Haneda, Leo |
title |
Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes |
title_short |
Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes |
title_full |
Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes |
title_fullStr |
Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes |
title_full_unstemmed |
Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes |
title_sort |
forest landscape restoration: spectral behavior and diversity of tropical tree cover classes |
publisher |
Elsevier |
url |
http://agritrop.cirad.fr/603065/ http://agritrop.cirad.fr/603065/1/Haneda_2022_RSA.pdf |
work_keys_str_mv |
AT eitihanedaleo forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT brancalionpedrohs forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT molinpaulog forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT pinheiroferreiramatheus forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT silvacarlosalberto forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT torresdealmeidacatherine forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT fariaresendeangelica forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT brossisantorogiulio forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT rosamarcosr forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT guillemotjoannes forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT lemaireguerric forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT feretjeanbaptiste forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses AT alvesdealmeidadaniloroberti forestlandscaperestorationspectralbehavioranddiversityoftropicaltreecoverclasses |
_version_ |
1819044712281014272 |
spelling |
dig-cirad-fr-6030652024-12-18T20:55:15Z http://agritrop.cirad.fr/603065/ http://agritrop.cirad.fr/603065/ Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes. Eiti Haneda Leo, Brancalion Pedro H.S., Molin Paulo G., Pinheiro Ferreira Matheus, Silva Carlos Alberto, Torres de Almeida Catherine, Faria Resende Angelica, Brossi Santoro Giulio, Rosa Marcos R., Guillemot Joannès, Le Maire Guerric, Feret Jean Baptiste, Alves de Almeida Danilo Roberti. 2023. Remote Sensing Applications. Society and Environment, 29:100882, 15 p.https://doi.org/10.1016/j.rsase.2022.100882 <https://doi.org/10.1016/j.rsase.2022.100882> Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes Eiti Haneda, Leo Brancalion, Pedro H.S. Molin, Paulo G. Pinheiro Ferreira, Matheus Silva, Carlos Alberto Torres de Almeida, Catherine Faria Resende, Angelica Brossi Santoro, Giulio Rosa, Marcos R. Guillemot, Joannès Le Maire, Guerric Feret, Jean Baptiste Alves de Almeida, Danilo Roberti eng 2023 Elsevier Remote Sensing Applications. Society and Environment K01 - Foresterie - Considérations générales U30 - Méthodes de recherche restauration du paysage forestier télédétection conservation de la nature forêt tropicale imagerie multispectrale couverture végétale restauration couverture végétale couvert analyse d'image http://aims.fao.org/aos/agrovoc/c_60067b8e http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5092 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_36765 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_26815 http://aims.fao.org/aos/agrovoc/c_1262 http://aims.fao.org/aos/agrovoc/c_36762 Brésil http://aims.fao.org/aos/agrovoc/c_1070 Forest landscape restoration (FLR) commitments have been established in the past years to restore over 200 million hectares, as part of the global Bonn Challenge goal, mostly through the implementation of several different restorative practices in degraded lands, ranging from commercial tree monocultures to restoration plantings. The potential of such contrasting restorative practices to support biodiversity conservation and ecosystem services provision vary over space and time, making the monitoring of FLR programs an emerging challenge. Remote sensing techniques, together with innovative technologies for data acquisition, treatment, and analysis have proven to be strategic for planning and monitoring FLR, yet there are still important unresolved questions. Here, we evaluated the potential of multispectral orbital images of the high spatial (5 m) and spectral (12 bands) resolution VENμS microsatellite, joint project of the Israeli Space Agency and CNES, to classify the spectral behavior and diversity of six tree cover classes (savanna woodlands, old- and second-growth semi-deciduous forests, young restoration plantings, and eucalyptus and pine tree monocultures) commonly found in FLR programs in tropical regions. We assessed how these tree cover classes located in a study landscape in southeastern Brazil differ according to their spectral response (winter and summer bands, and vegetation indices), canopy variability (textural features), seasonal behavior (delta layers - difference between summer and winter vegetation indexes), and spectral diversity, and used these attributes as variables to the model. We used the Random Forest algorithm to generate the models and evaluate how the tree cover classes differ in the classification and how the variables supported the model. We achieved high values of global accuracy (91.9%) and “F1 score” (above 0.8) for all tree cover classes, in which second-growth forest presented the lowest accuracy. The textural layers, delta layers, and the spectral diversity layers were the most important attributes to discriminate among tree cover classes. We demonstrate here the potential of using VENμS or similar sensor images together with different image processing and machine learning algorithms to monitor FLR programs, allowing further remote sensing approaches and in-deep field assessments to advance evaluation of FLR benefits for nature and people. We demonstrated how the fusion of all these types of data and innovative approaches to data processing, can result in novel ways to assess restoration performance and open new avenues to upscale monitoring, bridging the gap between FLR expectations and achieved goals. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/603065/1/Haneda_2022_RSA.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.rsase.2022.100882 10.1016/j.rsase.2022.100882 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rsase.2022.100882 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.rsase.2022.100882 |