Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to respond to climate change and land degradation while simultaneously improving global food security (IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several ecosystem services to populations, notably an increase in crop productivity. While remote sensing has been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the woody component. We propose an original approach combining remote sensing, landscape ecology and statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield estimation. The best model based on a combination of Green Difference Vegetation Index and number of trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 28%). The best model based solely on vegetation productivity (no information on parkland structure) explained only 46% of the observed variability (RRMSE = 34%). Secondly we investigated the drivers of the spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and management factors derived from geospatial data. The GBM model explained 81% of yield spatial variability. Predominant drivers were soil nutrient availability (i.e. soil total nitrogen and total phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These findings have to be strengthened by testing the approach in more diversified and/or denser parklands. Our study illustrates that recent advances in earth observations open up new avenues to improve the monitoring of parkland systems in smallholder context.
Main Authors: | , , , , , , , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Published: |
Elsevier
|
Subjects: | F08 - Systèmes et modes de culture, Faidherbia albida, agroforesterie, rendement des cultures, contrôle continu, évaluation, télédétection, relevé (des données), agriculture familiale, exploitation agricole familiale, http://aims.fao.org/aos/agrovoc/c_10734, http://aims.fao.org/aos/agrovoc/c_207, http://aims.fao.org/aos/agrovoc/c_10176, http://aims.fao.org/aos/agrovoc/c_2736, http://aims.fao.org/aos/agrovoc/c_330990, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_7536, http://aims.fao.org/aos/agrovoc/c_1422957329186, http://aims.fao.org/aos/agrovoc/c_2787, http://aims.fao.org/aos/agrovoc/c_6970, |
Online Access: | http://agritrop.cirad.fr/596325/ http://agritrop.cirad.fr/596325/7/ID596325.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-596325 |
---|---|
record_format |
koha |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 http://aims.fao.org/aos/agrovoc/c_6970 F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 http://aims.fao.org/aos/agrovoc/c_6970 |
spellingShingle |
F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 http://aims.fao.org/aos/agrovoc/c_6970 F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 http://aims.fao.org/aos/agrovoc/c_6970 Leroux, Louise Falconnier, Gatien N. Diouf, Abdoul Aziz Ndao, Babacar Gbodjo, Jean Eudes Tall, Laure Balde, Alpha Bocar Clermont-Dauphin, Cathy Bégué, Agnès Affholder, François Roupsard, Olivier Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal |
description |
Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to respond to climate change and land degradation while simultaneously improving global food security (IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several ecosystem services to populations, notably an increase in crop productivity. While remote sensing has been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the woody component. We propose an original approach combining remote sensing, landscape ecology and statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield estimation. The best model based on a combination of Green Difference Vegetation Index and number of trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 28%). The best model based solely on vegetation productivity (no information on parkland structure) explained only 46% of the observed variability (RRMSE = 34%). Secondly we investigated the drivers of the spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and management factors derived from geospatial data. The GBM model explained 81% of yield spatial variability. Predominant drivers were soil nutrient availability (i.e. soil total nitrogen and total phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These findings have to be strengthened by testing the approach in more diversified and/or denser parklands. Our study illustrates that recent advances in earth observations open up new avenues to improve the monitoring of parkland systems in smallholder context. |
format |
article |
topic_facet |
F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 http://aims.fao.org/aos/agrovoc/c_6970 |
author |
Leroux, Louise Falconnier, Gatien N. Diouf, Abdoul Aziz Ndao, Babacar Gbodjo, Jean Eudes Tall, Laure Balde, Alpha Bocar Clermont-Dauphin, Cathy Bégué, Agnès Affholder, François Roupsard, Olivier |
author_facet |
Leroux, Louise Falconnier, Gatien N. Diouf, Abdoul Aziz Ndao, Babacar Gbodjo, Jean Eudes Tall, Laure Balde, Alpha Bocar Clermont-Dauphin, Cathy Bégué, Agnès Affholder, François Roupsard, Olivier |
author_sort |
Leroux, Louise |
title |
Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal |
title_short |
Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal |
title_full |
Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal |
title_fullStr |
Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal |
title_full_unstemmed |
Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal |
title_sort |
using remote sensing to assess the effect of trees on millet yield in complex parklands of central senegal |
publisher |
Elsevier |
url |
http://agritrop.cirad.fr/596325/ http://agritrop.cirad.fr/596325/7/ID596325.pdf |
work_keys_str_mv |
AT lerouxlouise usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT falconniergatienn usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT dioufabdoulaziz usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT ndaobabacar usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT gbodjojeaneudes usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT talllaure usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT baldealphabocar usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT clermontdauphincathy usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT begueagnes usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT affholderfrancois usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal AT roupsardolivier usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal |
_version_ |
1819044186260766720 |
spelling |
dig-cirad-fr-5963252024-12-18T20:56:19Z http://agritrop.cirad.fr/596325/ http://agritrop.cirad.fr/596325/ Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal. Leroux Louise, Falconnier Gatien N., Diouf Abdoul Aziz, Ndao Babacar, Gbodjo Jean Eudes, Tall Laure, Balde Alpha Bocar, Clermont-Dauphin Cathy, Bégué Agnès, Affholder François, Roupsard Olivier. 2020. Agricultural Systems, 184:102918, 13 p.https://doi.org/10.1016/j.agsy.2020.102918 <https://doi.org/10.1016/j.agsy.2020.102918> Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal Leroux, Louise Falconnier, Gatien N. Diouf, Abdoul Aziz Ndao, Babacar Gbodjo, Jean Eudes Tall, Laure Balde, Alpha Bocar Clermont-Dauphin, Cathy Bégué, Agnès Affholder, François Roupsard, Olivier eng 2020 Elsevier Agricultural Systems F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 Sénégal http://aims.fao.org/aos/agrovoc/c_6970 Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to respond to climate change and land degradation while simultaneously improving global food security (IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several ecosystem services to populations, notably an increase in crop productivity. While remote sensing has been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the woody component. We propose an original approach combining remote sensing, landscape ecology and statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield estimation. The best model based on a combination of Green Difference Vegetation Index and number of trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 28%). The best model based solely on vegetation productivity (no information on parkland structure) explained only 46% of the observed variability (RRMSE = 34%). Secondly we investigated the drivers of the spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and management factors derived from geospatial data. The GBM model explained 81% of yield spatial variability. Predominant drivers were soil nutrient availability (i.e. soil total nitrogen and total phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These findings have to be strengthened by testing the approach in more diversified and/or denser parklands. Our study illustrates that recent advances in earth observations open up new avenues to improve the monitoring of parkland systems in smallholder context. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/acceptedVersion http://agritrop.cirad.fr/596325/7/ID596325.pdf text cc_by_nc info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1016/j.agsy.2020.102918 10.1016/j.agsy.2020.102918 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agsy.2020.102918 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.agsy.2020.102918 |