Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal

Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to respond to climate change and land degradation while simultaneously improving global food security (IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several ecosystem services to populations, notably an increase in crop productivity. While remote sensing has been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the woody component. We propose an original approach combining remote sensing, landscape ecology and statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield estimation. The best model based on a combination of Green Difference Vegetation Index and number of trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 28%). The best model based solely on vegetation productivity (no information on parkland structure) explained only 46% of the observed variability (RRMSE = 34%). Secondly we investigated the drivers of the spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and management factors derived from geospatial data. The GBM model explained 81% of yield spatial variability. Predominant drivers were soil nutrient availability (i.e. soil total nitrogen and total phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These findings have to be strengthened by testing the approach in more diversified and/or denser parklands. Our study illustrates that recent advances in earth observations open up new avenues to improve the monitoring of parkland systems in smallholder context.

Saved in:
Bibliographic Details
Main Authors: Leroux, Louise, Falconnier, Gatien N., Diouf, Abdoul Aziz, Ndao, Babacar, Gbodjo, Jean Eudes, Tall, Laure, Balde, Alpha Bocar, Clermont-Dauphin, Cathy, Bégué, Agnès, Affholder, François, Roupsard, Olivier
Format: article biblioteca
Language:eng
Published: Elsevier
Subjects:F08 - Systèmes et modes de culture, Faidherbia albida, agroforesterie, rendement des cultures, contrôle continu, évaluation, télédétection, relevé (des données), agriculture familiale, exploitation agricole familiale, http://aims.fao.org/aos/agrovoc/c_10734, http://aims.fao.org/aos/agrovoc/c_207, http://aims.fao.org/aos/agrovoc/c_10176, http://aims.fao.org/aos/agrovoc/c_2736, http://aims.fao.org/aos/agrovoc/c_330990, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_7536, http://aims.fao.org/aos/agrovoc/c_1422957329186, http://aims.fao.org/aos/agrovoc/c_2787, http://aims.fao.org/aos/agrovoc/c_6970,
Online Access:http://agritrop.cirad.fr/596325/
http://agritrop.cirad.fr/596325/7/ID596325.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-596325
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic F08 - Systèmes et modes de culture
Faidherbia albida
agroforesterie
rendement des cultures
contrôle continu
évaluation
télédétection
relevé (des données)
agriculture familiale
exploitation agricole familiale
http://aims.fao.org/aos/agrovoc/c_10734
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_10176
http://aims.fao.org/aos/agrovoc/c_2736
http://aims.fao.org/aos/agrovoc/c_330990
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_1422957329186
http://aims.fao.org/aos/agrovoc/c_2787
http://aims.fao.org/aos/agrovoc/c_6970
F08 - Systèmes et modes de culture
Faidherbia albida
agroforesterie
rendement des cultures
contrôle continu
évaluation
télédétection
relevé (des données)
agriculture familiale
exploitation agricole familiale
http://aims.fao.org/aos/agrovoc/c_10734
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_10176
http://aims.fao.org/aos/agrovoc/c_2736
http://aims.fao.org/aos/agrovoc/c_330990
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_1422957329186
http://aims.fao.org/aos/agrovoc/c_2787
http://aims.fao.org/aos/agrovoc/c_6970
spellingShingle F08 - Systèmes et modes de culture
Faidherbia albida
agroforesterie
rendement des cultures
contrôle continu
évaluation
télédétection
relevé (des données)
agriculture familiale
exploitation agricole familiale
http://aims.fao.org/aos/agrovoc/c_10734
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_10176
http://aims.fao.org/aos/agrovoc/c_2736
http://aims.fao.org/aos/agrovoc/c_330990
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_1422957329186
http://aims.fao.org/aos/agrovoc/c_2787
http://aims.fao.org/aos/agrovoc/c_6970
F08 - Systèmes et modes de culture
Faidherbia albida
agroforesterie
rendement des cultures
contrôle continu
évaluation
télédétection
relevé (des données)
agriculture familiale
exploitation agricole familiale
http://aims.fao.org/aos/agrovoc/c_10734
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_10176
http://aims.fao.org/aos/agrovoc/c_2736
http://aims.fao.org/aos/agrovoc/c_330990
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_1422957329186
http://aims.fao.org/aos/agrovoc/c_2787
http://aims.fao.org/aos/agrovoc/c_6970
Leroux, Louise
Falconnier, Gatien N.
Diouf, Abdoul Aziz
Ndao, Babacar
Gbodjo, Jean Eudes
Tall, Laure
Balde, Alpha Bocar
Clermont-Dauphin, Cathy
Bégué, Agnès
Affholder, François
Roupsard, Olivier
Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
description Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to respond to climate change and land degradation while simultaneously improving global food security (IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several ecosystem services to populations, notably an increase in crop productivity. While remote sensing has been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the woody component. We propose an original approach combining remote sensing, landscape ecology and statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield estimation. The best model based on a combination of Green Difference Vegetation Index and number of trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 28%). The best model based solely on vegetation productivity (no information on parkland structure) explained only 46% of the observed variability (RRMSE = 34%). Secondly we investigated the drivers of the spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and management factors derived from geospatial data. The GBM model explained 81% of yield spatial variability. Predominant drivers were soil nutrient availability (i.e. soil total nitrogen and total phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These findings have to be strengthened by testing the approach in more diversified and/or denser parklands. Our study illustrates that recent advances in earth observations open up new avenues to improve the monitoring of parkland systems in smallholder context.
format article
topic_facet F08 - Systèmes et modes de culture
Faidherbia albida
agroforesterie
rendement des cultures
contrôle continu
évaluation
télédétection
relevé (des données)
agriculture familiale
exploitation agricole familiale
http://aims.fao.org/aos/agrovoc/c_10734
http://aims.fao.org/aos/agrovoc/c_207
http://aims.fao.org/aos/agrovoc/c_10176
http://aims.fao.org/aos/agrovoc/c_2736
http://aims.fao.org/aos/agrovoc/c_330990
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_1422957329186
http://aims.fao.org/aos/agrovoc/c_2787
http://aims.fao.org/aos/agrovoc/c_6970
author Leroux, Louise
Falconnier, Gatien N.
Diouf, Abdoul Aziz
Ndao, Babacar
Gbodjo, Jean Eudes
Tall, Laure
Balde, Alpha Bocar
Clermont-Dauphin, Cathy
Bégué, Agnès
Affholder, François
Roupsard, Olivier
author_facet Leroux, Louise
Falconnier, Gatien N.
Diouf, Abdoul Aziz
Ndao, Babacar
Gbodjo, Jean Eudes
Tall, Laure
Balde, Alpha Bocar
Clermont-Dauphin, Cathy
Bégué, Agnès
Affholder, François
Roupsard, Olivier
author_sort Leroux, Louise
title Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
title_short Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
title_full Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
title_fullStr Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
title_full_unstemmed Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal
title_sort using remote sensing to assess the effect of trees on millet yield in complex parklands of central senegal
publisher Elsevier
url http://agritrop.cirad.fr/596325/
http://agritrop.cirad.fr/596325/7/ID596325.pdf
work_keys_str_mv AT lerouxlouise usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT falconniergatienn usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT dioufabdoulaziz usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT ndaobabacar usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT gbodjojeaneudes usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT talllaure usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT baldealphabocar usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT clermontdauphincathy usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT begueagnes usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT affholderfrancois usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
AT roupsardolivier usingremotesensingtoassesstheeffectoftreesonmilletyieldincomplexparklandsofcentralsenegal
_version_ 1819044186260766720
spelling dig-cirad-fr-5963252024-12-18T20:56:19Z http://agritrop.cirad.fr/596325/ http://agritrop.cirad.fr/596325/ Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal. Leroux Louise, Falconnier Gatien N., Diouf Abdoul Aziz, Ndao Babacar, Gbodjo Jean Eudes, Tall Laure, Balde Alpha Bocar, Clermont-Dauphin Cathy, Bégué Agnès, Affholder François, Roupsard Olivier. 2020. Agricultural Systems, 184:102918, 13 p.https://doi.org/10.1016/j.agsy.2020.102918 <https://doi.org/10.1016/j.agsy.2020.102918> Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal Leroux, Louise Falconnier, Gatien N. Diouf, Abdoul Aziz Ndao, Babacar Gbodjo, Jean Eudes Tall, Laure Balde, Alpha Bocar Clermont-Dauphin, Cathy Bégué, Agnès Affholder, François Roupsard, Olivier eng 2020 Elsevier Agricultural Systems F08 - Systèmes et modes de culture Faidherbia albida agroforesterie rendement des cultures contrôle continu évaluation télédétection relevé (des données) agriculture familiale exploitation agricole familiale http://aims.fao.org/aos/agrovoc/c_10734 http://aims.fao.org/aos/agrovoc/c_207 http://aims.fao.org/aos/agrovoc/c_10176 http://aims.fao.org/aos/agrovoc/c_2736 http://aims.fao.org/aos/agrovoc/c_330990 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_1422957329186 http://aims.fao.org/aos/agrovoc/c_2787 Sénégal http://aims.fao.org/aos/agrovoc/c_6970 Agroforestry is pointed out by the Intergovernmental Panel on Climate Change report as a key option to respond to climate change and land degradation while simultaneously improving global food security (IPCC, 2019). Faidherbia albida parklands are widespread in Sub-Saharan Africa and provide several ecosystem services to populations, notably an increase in crop productivity. While remote sensing has been proven useful for crop yield assessment in smallholder farming system, it has so far ignored the woody component. We propose an original approach combining remote sensing, landscape ecology and statistical modelling to i) improve the accuracy of millet yield prediction in parklands and ii) identify the main drivers of millet yield spatial variation. The parkland of Central Senegal was chosen as a case study. Firstly, we calibrated a remote sensing-based linear model that accounted for vegetation productivity and tree density to predict millet yield. Integrating parkland structure improved the accuracy of yield estimation. The best model based on a combination of Green Difference Vegetation Index and number of trees in the field explained 70% of observed yield variability (relative Root Mean Squared Error (RRMSE) of 28%). The best model based solely on vegetation productivity (no information on parkland structure) explained only 46% of the observed variability (RRMSE = 34%). Secondly we investigated the drivers of the spatial variability in estimated yield using Gradient Boosting Machine algorithm (GBM) and biophysical and management factors derived from geospatial data. The GBM model explained 81% of yield spatial variability. Predominant drivers were soil nutrient availability (i.e. soil total nitrogen and total phosphorous) and woody cover in the surrounding landscape of fields. Our results show that millet yield increases with woody cover in the surrounding landscape of fields up to a woody cover of 35%. These findings have to be strengthened by testing the approach in more diversified and/or denser parklands. Our study illustrates that recent advances in earth observations open up new avenues to improve the monitoring of parkland systems in smallholder context. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/acceptedVersion http://agritrop.cirad.fr/596325/7/ID596325.pdf text cc_by_nc info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/4.0/ https://doi.org/10.1016/j.agsy.2020.102918 10.1016/j.agsy.2020.102918 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agsy.2020.102918 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.agsy.2020.102918