Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses

Many biological quantities cannot be measured directly but rather need to be estimated from models. Estimates from models are statistical objects with variance and, when derived simultaneously, covariance. It is well known that their variance–covariance (VC) matrix must be considered in subsequent analyses. Although it is always preferable to carry out the proposed analyses on the raw data themselves, a two‐step approach cannot always be avoided. This situation arises when the parameters of a multinomial must be regressed against a covariate. The Delta method is an appropriate and frequently recommended way of deriving variance approximations of transformed and correlated variables. Implementing the Delta method is not trivial, and there is a lack of a detailed information on the procedure in the literature for complex situations such as those involved in constraining the parameters of a multinomial distribution. This paper proposes a how‐to guide for calculating the correct VC matrices of dependant estimates involved in multinomial distributions and how to use them for testing the effects of covariates in post hoc analyses when the integration of these analyses directly into a model is not possible. For illustrative purpose, we focus on variables calculated in capture–recapture models, but the same procedure can be applied to all analyses dealing with correlated estimates with multinomial distribution and their variances and covariances.

Saved in:
Bibliographic Details
Main Authors: Guery, Loreleï, Rouan, Lauriane, Descamps, Sébastien, Bêty, Joël, Fernández-Chacón, Albert, Gilchrist, Grant, Pradel, Roger
Format: article biblioteca
Language:eng
Published: Wiley
Subjects:U10 - Informatique, mathématiques et statistiques, P01 - Conservation de la nature et ressources foncières, L60 - Taxonomie et géographie animales, analyse de données, modélisation, analyse de covariance, écologie animale, dynamique des populations, http://aims.fao.org/aos/agrovoc/c_15962, http://aims.fao.org/aos/agrovoc/c_230ab86c, http://aims.fao.org/aos/agrovoc/c_28833, http://aims.fao.org/aos/agrovoc/c_427, http://aims.fao.org/aos/agrovoc/c_6111,
Online Access:http://agritrop.cirad.fr/591046/
http://agritrop.cirad.fr/591046/1/Guery_et_al-2019-Ecology_and_Evolution.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-591046
record_format koha
spelling dig-cirad-fr-5910462024-12-18T13:39:09Z http://agritrop.cirad.fr/591046/ http://agritrop.cirad.fr/591046/ Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses. Guery Loreleï, Rouan Lauriane, Descamps Sébastien, Bêty Joël, Fernández-Chacón Albert, Gilchrist Grant, Pradel Roger. 2019. Ecology and Evolution, 9 (2) : 818-824.https://doi.org/10.1002/ece3.4827 <https://doi.org/10.1002/ece3.4827> Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses Guery, Loreleï Rouan, Lauriane Descamps, Sébastien Bêty, Joël Fernández-Chacón, Albert Gilchrist, Grant Pradel, Roger eng 2019 Wiley Ecology and Evolution U10 - Informatique, mathématiques et statistiques P01 - Conservation de la nature et ressources foncières L60 - Taxonomie et géographie animales analyse de données modélisation analyse de covariance écologie animale dynamique des populations http://aims.fao.org/aos/agrovoc/c_15962 http://aims.fao.org/aos/agrovoc/c_230ab86c http://aims.fao.org/aos/agrovoc/c_28833 http://aims.fao.org/aos/agrovoc/c_427 http://aims.fao.org/aos/agrovoc/c_6111 Many biological quantities cannot be measured directly but rather need to be estimated from models. Estimates from models are statistical objects with variance and, when derived simultaneously, covariance. It is well known that their variance–covariance (VC) matrix must be considered in subsequent analyses. Although it is always preferable to carry out the proposed analyses on the raw data themselves, a two‐step approach cannot always be avoided. This situation arises when the parameters of a multinomial must be regressed against a covariate. The Delta method is an appropriate and frequently recommended way of deriving variance approximations of transformed and correlated variables. Implementing the Delta method is not trivial, and there is a lack of a detailed information on the procedure in the literature for complex situations such as those involved in constraining the parameters of a multinomial distribution. This paper proposes a how‐to guide for calculating the correct VC matrices of dependant estimates involved in multinomial distributions and how to use them for testing the effects of covariates in post hoc analyses when the integration of these analyses directly into a model is not possible. For illustrative purpose, we focus on variables calculated in capture–recapture models, but the same procedure can be applied to all analyses dealing with correlated estimates with multinomial distribution and their variances and covariances. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/591046/1/Guery_et_al-2019-Ecology_and_Evolution.pdf text cc_by info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.1002/ece3.4827 10.1002/ece3.4827 info:eu-repo/semantics/altIdentifier/doi/10.1002/ece3.4827 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1002/ece3.4827
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U10 - Informatique, mathématiques et statistiques
P01 - Conservation de la nature et ressources foncières
L60 - Taxonomie et géographie animales
analyse de données
modélisation
analyse de covariance
écologie animale
dynamique des populations
http://aims.fao.org/aos/agrovoc/c_15962
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_28833
http://aims.fao.org/aos/agrovoc/c_427
http://aims.fao.org/aos/agrovoc/c_6111
U10 - Informatique, mathématiques et statistiques
P01 - Conservation de la nature et ressources foncières
L60 - Taxonomie et géographie animales
analyse de données
modélisation
analyse de covariance
écologie animale
dynamique des populations
http://aims.fao.org/aos/agrovoc/c_15962
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_28833
http://aims.fao.org/aos/agrovoc/c_427
http://aims.fao.org/aos/agrovoc/c_6111
spellingShingle U10 - Informatique, mathématiques et statistiques
P01 - Conservation de la nature et ressources foncières
L60 - Taxonomie et géographie animales
analyse de données
modélisation
analyse de covariance
écologie animale
dynamique des populations
http://aims.fao.org/aos/agrovoc/c_15962
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_28833
http://aims.fao.org/aos/agrovoc/c_427
http://aims.fao.org/aos/agrovoc/c_6111
U10 - Informatique, mathématiques et statistiques
P01 - Conservation de la nature et ressources foncières
L60 - Taxonomie et géographie animales
analyse de données
modélisation
analyse de covariance
écologie animale
dynamique des populations
http://aims.fao.org/aos/agrovoc/c_15962
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_28833
http://aims.fao.org/aos/agrovoc/c_427
http://aims.fao.org/aos/agrovoc/c_6111
Guery, Loreleï
Rouan, Lauriane
Descamps, Sébastien
Bêty, Joël
Fernández-Chacón, Albert
Gilchrist, Grant
Pradel, Roger
Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
description Many biological quantities cannot be measured directly but rather need to be estimated from models. Estimates from models are statistical objects with variance and, when derived simultaneously, covariance. It is well known that their variance–covariance (VC) matrix must be considered in subsequent analyses. Although it is always preferable to carry out the proposed analyses on the raw data themselves, a two‐step approach cannot always be avoided. This situation arises when the parameters of a multinomial must be regressed against a covariate. The Delta method is an appropriate and frequently recommended way of deriving variance approximations of transformed and correlated variables. Implementing the Delta method is not trivial, and there is a lack of a detailed information on the procedure in the literature for complex situations such as those involved in constraining the parameters of a multinomial distribution. This paper proposes a how‐to guide for calculating the correct VC matrices of dependant estimates involved in multinomial distributions and how to use them for testing the effects of covariates in post hoc analyses when the integration of these analyses directly into a model is not possible. For illustrative purpose, we focus on variables calculated in capture–recapture models, but the same procedure can be applied to all analyses dealing with correlated estimates with multinomial distribution and their variances and covariances.
format article
topic_facet U10 - Informatique, mathématiques et statistiques
P01 - Conservation de la nature et ressources foncières
L60 - Taxonomie et géographie animales
analyse de données
modélisation
analyse de covariance
écologie animale
dynamique des populations
http://aims.fao.org/aos/agrovoc/c_15962
http://aims.fao.org/aos/agrovoc/c_230ab86c
http://aims.fao.org/aos/agrovoc/c_28833
http://aims.fao.org/aos/agrovoc/c_427
http://aims.fao.org/aos/agrovoc/c_6111
author Guery, Loreleï
Rouan, Lauriane
Descamps, Sébastien
Bêty, Joël
Fernández-Chacón, Albert
Gilchrist, Grant
Pradel, Roger
author_facet Guery, Loreleï
Rouan, Lauriane
Descamps, Sébastien
Bêty, Joël
Fernández-Chacón, Albert
Gilchrist, Grant
Pradel, Roger
author_sort Guery, Loreleï
title Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
title_short Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
title_full Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
title_fullStr Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
title_full_unstemmed Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
title_sort covariate and multinomial: accounting for distance in movement in capture-recapture analyses
publisher Wiley
url http://agritrop.cirad.fr/591046/
http://agritrop.cirad.fr/591046/1/Guery_et_al-2019-Ecology_and_Evolution.pdf
work_keys_str_mv AT guerylorelei covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
AT rouanlauriane covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
AT descampssebastien covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
AT betyjoel covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
AT fernandezchaconalbert covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
AT gilchristgrant covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
AT pradelroger covariateandmultinomialaccountingfordistanceinmovementincapturerecaptureanalyses
_version_ 1819043857075011584