Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model.
Main Authors: | , , , , , , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | K10 - Production forestière, F30 - Génétique et amélioration des plantes, Eucalyptus robusta, arbre forestier, index de sélection, génomique, amélioration génétique, variation génétique, lignine, cellulose, http://aims.fao.org/aos/agrovoc/c_32137, http://aims.fao.org/aos/agrovoc/c_3052, http://aims.fao.org/aos/agrovoc/c_24423, http://aims.fao.org/aos/agrovoc/c_92382, http://aims.fao.org/aos/agrovoc/c_49902, http://aims.fao.org/aos/agrovoc/c_15975, http://aims.fao.org/aos/agrovoc/c_4329, http://aims.fao.org/aos/agrovoc/c_1423, http://aims.fao.org/aos/agrovoc/c_4510, |
Online Access: | http://agritrop.cirad.fr/588951/ http://agritrop.cirad.fr/588951/1/Rambolarimanana_et_al-2018-Tree_Genetics_%2526_Genomes.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-588951 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5889512024-08-04T16:01:48Z http://agritrop.cirad.fr/588951/ http://agritrop.cirad.fr/588951/ Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Rambolarimanana Herintahina, Ramamonjisoa Lolona, Verhaegen Daniel, Leong Pock Tsy Jean-Michel, Jacquin Laval, Cao-Hamadou Tuong-Vi, Makouanzi Chrissy Garel, Bouvet Jean-Marc. 2018. Tree Genetics and Genomes, 14 (5):71, 13 p.https://doi.org/10.1007/s11295-018-1286-5 <https://doi.org/10.1007/s11295-018-1286-5> Performance of multi-trait genomic selection for Eucalyptus robusta breeding program Rambolarimanana, Herintahina Ramamonjisoa, Lolona Verhaegen, Daniel Leong Pock Tsy, Jean-Michel Jacquin, Laval Cao-Hamadou, Tuong-Vi Makouanzi, Chrissy Garel Bouvet, Jean-Marc eng 2018 Tree Genetics and Genomes K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 Madagascar http://aims.fao.org/aos/agrovoc/c_4510 In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/588951/1/Rambolarimanana_et_al-2018-Tree_Genetics_%2526_Genomes.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1007/s11295-018-1286-5 10.1007/s11295-018-1286-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11295-018-1286-5 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1007/s11295-018-1286-5 |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 http://aims.fao.org/aos/agrovoc/c_4510 K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 http://aims.fao.org/aos/agrovoc/c_4510 |
spellingShingle |
K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 http://aims.fao.org/aos/agrovoc/c_4510 K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 http://aims.fao.org/aos/agrovoc/c_4510 Rambolarimanana, Herintahina Ramamonjisoa, Lolona Verhaegen, Daniel Leong Pock Tsy, Jean-Michel Jacquin, Laval Cao-Hamadou, Tuong-Vi Makouanzi, Chrissy Garel Bouvet, Jean-Marc Performance of multi-trait genomic selection for Eucalyptus robusta breeding program |
description |
In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model. |
format |
article |
topic_facet |
K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 http://aims.fao.org/aos/agrovoc/c_4510 |
author |
Rambolarimanana, Herintahina Ramamonjisoa, Lolona Verhaegen, Daniel Leong Pock Tsy, Jean-Michel Jacquin, Laval Cao-Hamadou, Tuong-Vi Makouanzi, Chrissy Garel Bouvet, Jean-Marc |
author_facet |
Rambolarimanana, Herintahina Ramamonjisoa, Lolona Verhaegen, Daniel Leong Pock Tsy, Jean-Michel Jacquin, Laval Cao-Hamadou, Tuong-Vi Makouanzi, Chrissy Garel Bouvet, Jean-Marc |
author_sort |
Rambolarimanana, Herintahina |
title |
Performance of multi-trait genomic selection for Eucalyptus robusta breeding program |
title_short |
Performance of multi-trait genomic selection for Eucalyptus robusta breeding program |
title_full |
Performance of multi-trait genomic selection for Eucalyptus robusta breeding program |
title_fullStr |
Performance of multi-trait genomic selection for Eucalyptus robusta breeding program |
title_full_unstemmed |
Performance of multi-trait genomic selection for Eucalyptus robusta breeding program |
title_sort |
performance of multi-trait genomic selection for eucalyptus robusta breeding program |
url |
http://agritrop.cirad.fr/588951/ http://agritrop.cirad.fr/588951/1/Rambolarimanana_et_al-2018-Tree_Genetics_%2526_Genomes.pdf |
work_keys_str_mv |
AT rambolarimananaherintahina performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT ramamonjisoalolona performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT verhaegendaniel performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT leongpocktsyjeanmichel performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT jacquinlaval performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT caohamadoutuongvi performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT makouanzichrissygarel performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram AT bouvetjeanmarc performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram |
_version_ |
1807170483540459520 |