Performance of multi-trait genomic selection for Eucalyptus robusta breeding program

In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model.

Saved in:
Bibliographic Details
Main Authors: Rambolarimanana, Herintahina, Ramamonjisoa, Lolona, Verhaegen, Daniel, Leong Pock Tsy, Jean-Michel, Jacquin, Laval, Cao-Hamadou, Tuong-Vi, Makouanzi, Chrissy Garel, Bouvet, Jean-Marc
Format: article biblioteca
Language:eng
Subjects:K10 - Production forestière, F30 - Génétique et amélioration des plantes, Eucalyptus robusta, arbre forestier, index de sélection, génomique, amélioration génétique, variation génétique, lignine, cellulose, http://aims.fao.org/aos/agrovoc/c_32137, http://aims.fao.org/aos/agrovoc/c_3052, http://aims.fao.org/aos/agrovoc/c_24423, http://aims.fao.org/aos/agrovoc/c_92382, http://aims.fao.org/aos/agrovoc/c_49902, http://aims.fao.org/aos/agrovoc/c_15975, http://aims.fao.org/aos/agrovoc/c_4329, http://aims.fao.org/aos/agrovoc/c_1423, http://aims.fao.org/aos/agrovoc/c_4510,
Online Access:http://agritrop.cirad.fr/588951/
http://agritrop.cirad.fr/588951/1/Rambolarimanana_et_al-2018-Tree_Genetics_%2526_Genomes.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-588951
record_format koha
spelling dig-cirad-fr-5889512024-08-04T16:01:48Z http://agritrop.cirad.fr/588951/ http://agritrop.cirad.fr/588951/ Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Rambolarimanana Herintahina, Ramamonjisoa Lolona, Verhaegen Daniel, Leong Pock Tsy Jean-Michel, Jacquin Laval, Cao-Hamadou Tuong-Vi, Makouanzi Chrissy Garel, Bouvet Jean-Marc. 2018. Tree Genetics and Genomes, 14 (5):71, 13 p.https://doi.org/10.1007/s11295-018-1286-5 <https://doi.org/10.1007/s11295-018-1286-5> Performance of multi-trait genomic selection for Eucalyptus robusta breeding program Rambolarimanana, Herintahina Ramamonjisoa, Lolona Verhaegen, Daniel Leong Pock Tsy, Jean-Michel Jacquin, Laval Cao-Hamadou, Tuong-Vi Makouanzi, Chrissy Garel Bouvet, Jean-Marc eng 2018 Tree Genetics and Genomes K10 - Production forestière F30 - Génétique et amélioration des plantes Eucalyptus robusta arbre forestier index de sélection génomique amélioration génétique variation génétique lignine cellulose http://aims.fao.org/aos/agrovoc/c_32137 http://aims.fao.org/aos/agrovoc/c_3052 http://aims.fao.org/aos/agrovoc/c_24423 http://aims.fao.org/aos/agrovoc/c_92382 http://aims.fao.org/aos/agrovoc/c_49902 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_4329 http://aims.fao.org/aos/agrovoc/c_1423 Madagascar http://aims.fao.org/aos/agrovoc/c_4510 In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/588951/1/Rambolarimanana_et_al-2018-Tree_Genetics_%2526_Genomes.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1007/s11295-018-1286-5 10.1007/s11295-018-1286-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11295-018-1286-5 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1007/s11295-018-1286-5
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic K10 - Production forestière
F30 - Génétique et amélioration des plantes
Eucalyptus robusta
arbre forestier
index de sélection
génomique
amélioration génétique
variation génétique
lignine
cellulose
http://aims.fao.org/aos/agrovoc/c_32137
http://aims.fao.org/aos/agrovoc/c_3052
http://aims.fao.org/aos/agrovoc/c_24423
http://aims.fao.org/aos/agrovoc/c_92382
http://aims.fao.org/aos/agrovoc/c_49902
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_4329
http://aims.fao.org/aos/agrovoc/c_1423
http://aims.fao.org/aos/agrovoc/c_4510
K10 - Production forestière
F30 - Génétique et amélioration des plantes
Eucalyptus robusta
arbre forestier
index de sélection
génomique
amélioration génétique
variation génétique
lignine
cellulose
http://aims.fao.org/aos/agrovoc/c_32137
http://aims.fao.org/aos/agrovoc/c_3052
http://aims.fao.org/aos/agrovoc/c_24423
http://aims.fao.org/aos/agrovoc/c_92382
http://aims.fao.org/aos/agrovoc/c_49902
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_4329
http://aims.fao.org/aos/agrovoc/c_1423
http://aims.fao.org/aos/agrovoc/c_4510
spellingShingle K10 - Production forestière
F30 - Génétique et amélioration des plantes
Eucalyptus robusta
arbre forestier
index de sélection
génomique
amélioration génétique
variation génétique
lignine
cellulose
http://aims.fao.org/aos/agrovoc/c_32137
http://aims.fao.org/aos/agrovoc/c_3052
http://aims.fao.org/aos/agrovoc/c_24423
http://aims.fao.org/aos/agrovoc/c_92382
http://aims.fao.org/aos/agrovoc/c_49902
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_4329
http://aims.fao.org/aos/agrovoc/c_1423
http://aims.fao.org/aos/agrovoc/c_4510
K10 - Production forestière
F30 - Génétique et amélioration des plantes
Eucalyptus robusta
arbre forestier
index de sélection
génomique
amélioration génétique
variation génétique
lignine
cellulose
http://aims.fao.org/aos/agrovoc/c_32137
http://aims.fao.org/aos/agrovoc/c_3052
http://aims.fao.org/aos/agrovoc/c_24423
http://aims.fao.org/aos/agrovoc/c_92382
http://aims.fao.org/aos/agrovoc/c_49902
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_4329
http://aims.fao.org/aos/agrovoc/c_1423
http://aims.fao.org/aos/agrovoc/c_4510
Rambolarimanana, Herintahina
Ramamonjisoa, Lolona
Verhaegen, Daniel
Leong Pock Tsy, Jean-Michel
Jacquin, Laval
Cao-Hamadou, Tuong-Vi
Makouanzi, Chrissy Garel
Bouvet, Jean-Marc
Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
description In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model.
format article
topic_facet K10 - Production forestière
F30 - Génétique et amélioration des plantes
Eucalyptus robusta
arbre forestier
index de sélection
génomique
amélioration génétique
variation génétique
lignine
cellulose
http://aims.fao.org/aos/agrovoc/c_32137
http://aims.fao.org/aos/agrovoc/c_3052
http://aims.fao.org/aos/agrovoc/c_24423
http://aims.fao.org/aos/agrovoc/c_92382
http://aims.fao.org/aos/agrovoc/c_49902
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_4329
http://aims.fao.org/aos/agrovoc/c_1423
http://aims.fao.org/aos/agrovoc/c_4510
author Rambolarimanana, Herintahina
Ramamonjisoa, Lolona
Verhaegen, Daniel
Leong Pock Tsy, Jean-Michel
Jacquin, Laval
Cao-Hamadou, Tuong-Vi
Makouanzi, Chrissy Garel
Bouvet, Jean-Marc
author_facet Rambolarimanana, Herintahina
Ramamonjisoa, Lolona
Verhaegen, Daniel
Leong Pock Tsy, Jean-Michel
Jacquin, Laval
Cao-Hamadou, Tuong-Vi
Makouanzi, Chrissy Garel
Bouvet, Jean-Marc
author_sort Rambolarimanana, Herintahina
title Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
title_short Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
title_full Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
title_fullStr Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
title_full_unstemmed Performance of multi-trait genomic selection for Eucalyptus robusta breeding program
title_sort performance of multi-trait genomic selection for eucalyptus robusta breeding program
url http://agritrop.cirad.fr/588951/
http://agritrop.cirad.fr/588951/1/Rambolarimanana_et_al-2018-Tree_Genetics_%2526_Genomes.pdf
work_keys_str_mv AT rambolarimananaherintahina performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT ramamonjisoalolona performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT verhaegendaniel performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT leongpocktsyjeanmichel performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT jacquinlaval performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT caohamadoutuongvi performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT makouanzichrissygarel performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
AT bouvetjeanmarc performanceofmultitraitgenomicselectionforeucalyptusrobustabreedingprogram
_version_ 1807170483540459520