What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?

A thorough understanding of how tropical forests respond to climate is important to improve ecosystem process models and to reduce uncertainties in current and future global carbon balance calculations. The Amazon rainforest, a major contributor to the global carbon cycle, is subject to strong intra- and interannual variations in climate conditions. Understanding their effect on carbon fluxes between the ecosystem and the atmosphere and on the resulting carbon balance is still incomplete. We examined the long-term (over a 12-year period; 2004–2015) variations in gross primary productivity (GPP), ecosystem respiration (RE) and net ecosystem exchange (NEE) in a tropical rainforest in French Guiana and identified key climatic drivers influencing the changes. The study period was characterized by strong differences in climatic conditions among years, particularly differences in the intensity of the dry and wet seasons, as well as differences in annual carbon fluxes and balance. Annual average GPP varied from 3384.9 g C m−2 yr‒1 (95% CI [3320.7, 3445.9]) to 4061.2 g C m−2 yr‒1 (95% CI [3980.1, 4145.0]). RE varied even more than GPP, with a difference of 933.1 C m−2 yr‒1 between the minimum (3020.6 g C m−2 yr‒1; 95% CI [2889.4, 3051.3]) and maximum (3953.7 g C m−2 yr‒1; 95% CI [3887.6, 4019.6]) values. Although NEE showed large interannual variability (nine-fold), from ‒65.6 g C m−2 yr‒1 (95% CI [‒4.4, ‒126.0]) to ‒590.5 g C m−2 yr‒1 (95% CI [‒532.3, ‒651.6]), the forest remained a carbon sink over the 12-year period. A combination of global radiation (Rg), relative extractable water (REW) and soil temperature (Ts) explained 51% of the daily variations for GPP, 30% for RE and 39% for NEE. Global radiation was always the best predictor of these variations, but soil water content and temperature did also influence carbon fluxes and balance. Seasonally, Rg was the major controlling factor for GPP, RE and NEE during the wet season. During the dry season, variations in carbon fluxes and balance were poorly explained by climate factors. Yet, REW was the key driver of variations in NEE during the dry season. This study highlights that, over the long-term, carbon fluxes and balance in such tropical rainforest ecosystems are largely controlled by both radiation and water limitation. Even though variations in Rg have a greater impact on these fluxes, water limitation during seasonal droughts is enough to reduce ecosystem productivity, respiration and carbon uptake. The reduced precipitation expected in tropical rainforest areas under future climatic conditions will therefore strongly influence carbon fluxes and carbon uptake. This study also highlights the importance for land surface or dynamic global vegetation models to consider the main drivers of carbon fluxes and balance separately for dry and wet seasons.

Saved in:
Bibliographic Details
Main Authors: Aguilos, Maricar, Herault, Bruno, Burban, Benoit, Wagner, Fabien, Bonal, Damien
Format: article biblioteca
Language:eng
Subjects:K01 - Foresterie - Considérations générales, P01 - Conservation de la nature et ressources foncières, P40 - Météorologie et climatologie, P33 - Chimie et physique du sol, forêt, forêt tropicale humide, séquestration du carbone, cycle du carbone, changement climatique, http://aims.fao.org/aos/agrovoc/c_3062, http://aims.fao.org/aos/agrovoc/c_7976, http://aims.fao.org/aos/agrovoc/c_331583, http://aims.fao.org/aos/agrovoc/c_17299, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_3093, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/587726/
http://agritrop.cirad.fr/587726/1/Aguilos%20et%20al.%20-%202018%20-%20What%20drives%20long-term%20variations%20in%20carbon%20flux%20and%20balance%20in%20a%20tropical%20rainforest%20in%20French%20Guiana.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-587726
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic K01 - Foresterie - Considérations générales
P01 - Conservation de la nature et ressources foncières
P40 - Météorologie et climatologie
P33 - Chimie et physique du sol
forêt
forêt tropicale humide
séquestration du carbone
cycle du carbone
changement climatique
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_7976
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_17299
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_3093
http://aims.fao.org/aos/agrovoc/c_3081
K01 - Foresterie - Considérations générales
P01 - Conservation de la nature et ressources foncières
P40 - Météorologie et climatologie
P33 - Chimie et physique du sol
forêt
forêt tropicale humide
séquestration du carbone
cycle du carbone
changement climatique
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_7976
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_17299
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_3093
http://aims.fao.org/aos/agrovoc/c_3081
spellingShingle K01 - Foresterie - Considérations générales
P01 - Conservation de la nature et ressources foncières
P40 - Météorologie et climatologie
P33 - Chimie et physique du sol
forêt
forêt tropicale humide
séquestration du carbone
cycle du carbone
changement climatique
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_7976
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_17299
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_3093
http://aims.fao.org/aos/agrovoc/c_3081
K01 - Foresterie - Considérations générales
P01 - Conservation de la nature et ressources foncières
P40 - Météorologie et climatologie
P33 - Chimie et physique du sol
forêt
forêt tropicale humide
séquestration du carbone
cycle du carbone
changement climatique
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_7976
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_17299
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_3093
http://aims.fao.org/aos/agrovoc/c_3081
Aguilos, Maricar
Herault, Bruno
Burban, Benoit
Wagner, Fabien
Bonal, Damien
What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?
description A thorough understanding of how tropical forests respond to climate is important to improve ecosystem process models and to reduce uncertainties in current and future global carbon balance calculations. The Amazon rainforest, a major contributor to the global carbon cycle, is subject to strong intra- and interannual variations in climate conditions. Understanding their effect on carbon fluxes between the ecosystem and the atmosphere and on the resulting carbon balance is still incomplete. We examined the long-term (over a 12-year period; 2004–2015) variations in gross primary productivity (GPP), ecosystem respiration (RE) and net ecosystem exchange (NEE) in a tropical rainforest in French Guiana and identified key climatic drivers influencing the changes. The study period was characterized by strong differences in climatic conditions among years, particularly differences in the intensity of the dry and wet seasons, as well as differences in annual carbon fluxes and balance. Annual average GPP varied from 3384.9 g C m−2 yr‒1 (95% CI [3320.7, 3445.9]) to 4061.2 g C m−2 yr‒1 (95% CI [3980.1, 4145.0]). RE varied even more than GPP, with a difference of 933.1 C m−2 yr‒1 between the minimum (3020.6 g C m−2 yr‒1; 95% CI [2889.4, 3051.3]) and maximum (3953.7 g C m−2 yr‒1; 95% CI [3887.6, 4019.6]) values. Although NEE showed large interannual variability (nine-fold), from ‒65.6 g C m−2 yr‒1 (95% CI [‒4.4, ‒126.0]) to ‒590.5 g C m−2 yr‒1 (95% CI [‒532.3, ‒651.6]), the forest remained a carbon sink over the 12-year period. A combination of global radiation (Rg), relative extractable water (REW) and soil temperature (Ts) explained 51% of the daily variations for GPP, 30% for RE and 39% for NEE. Global radiation was always the best predictor of these variations, but soil water content and temperature did also influence carbon fluxes and balance. Seasonally, Rg was the major controlling factor for GPP, RE and NEE during the wet season. During the dry season, variations in carbon fluxes and balance were poorly explained by climate factors. Yet, REW was the key driver of variations in NEE during the dry season. This study highlights that, over the long-term, carbon fluxes and balance in such tropical rainforest ecosystems are largely controlled by both radiation and water limitation. Even though variations in Rg have a greater impact on these fluxes, water limitation during seasonal droughts is enough to reduce ecosystem productivity, respiration and carbon uptake. The reduced precipitation expected in tropical rainforest areas under future climatic conditions will therefore strongly influence carbon fluxes and carbon uptake. This study also highlights the importance for land surface or dynamic global vegetation models to consider the main drivers of carbon fluxes and balance separately for dry and wet seasons.
format article
topic_facet K01 - Foresterie - Considérations générales
P01 - Conservation de la nature et ressources foncières
P40 - Météorologie et climatologie
P33 - Chimie et physique du sol
forêt
forêt tropicale humide
séquestration du carbone
cycle du carbone
changement climatique
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_7976
http://aims.fao.org/aos/agrovoc/c_331583
http://aims.fao.org/aos/agrovoc/c_17299
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_3093
http://aims.fao.org/aos/agrovoc/c_3081
author Aguilos, Maricar
Herault, Bruno
Burban, Benoit
Wagner, Fabien
Bonal, Damien
author_facet Aguilos, Maricar
Herault, Bruno
Burban, Benoit
Wagner, Fabien
Bonal, Damien
author_sort Aguilos, Maricar
title What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?
title_short What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?
title_full What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?
title_fullStr What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?
title_full_unstemmed What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?
title_sort what drives long-term variations in carbon flux and balance in a tropical rainforest in french guiana?
url http://agritrop.cirad.fr/587726/
http://agritrop.cirad.fr/587726/1/Aguilos%20et%20al.%20-%202018%20-%20What%20drives%20long-term%20variations%20in%20carbon%20flux%20and%20balance%20in%20a%20tropical%20rainforest%20in%20French%20Guiana.pdf
work_keys_str_mv AT aguilosmaricar whatdriveslongtermvariationsincarbonfluxandbalanceinatropicalrainforestinfrenchguiana
AT heraultbruno whatdriveslongtermvariationsincarbonfluxandbalanceinatropicalrainforestinfrenchguiana
AT burbanbenoit whatdriveslongtermvariationsincarbonfluxandbalanceinatropicalrainforestinfrenchguiana
AT wagnerfabien whatdriveslongtermvariationsincarbonfluxandbalanceinatropicalrainforestinfrenchguiana
AT bonaldamien whatdriveslongtermvariationsincarbonfluxandbalanceinatropicalrainforestinfrenchguiana
_version_ 1792499480059183104
spelling dig-cirad-fr-5877262024-01-29T00:59:44Z http://agritrop.cirad.fr/587726/ http://agritrop.cirad.fr/587726/ What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Aguilos Maricar, Herault Bruno, Burban Benoit, Wagner Fabien, Bonal Damien. 2018. Agricultural and Forest Meteorology, 253-254 : 114-123.https://doi.org/10.1016/j.agrformet.2018.02.009 <https://doi.org/10.1016/j.agrformet.2018.02.009> What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Aguilos, Maricar Herault, Bruno Burban, Benoit Wagner, Fabien Bonal, Damien eng 2018 Agricultural and Forest Meteorology K01 - Foresterie - Considérations générales P01 - Conservation de la nature et ressources foncières P40 - Météorologie et climatologie P33 - Chimie et physique du sol forêt forêt tropicale humide séquestration du carbone cycle du carbone changement climatique http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_7976 http://aims.fao.org/aos/agrovoc/c_331583 http://aims.fao.org/aos/agrovoc/c_17299 http://aims.fao.org/aos/agrovoc/c_1666 Guyane française France http://aims.fao.org/aos/agrovoc/c_3093 http://aims.fao.org/aos/agrovoc/c_3081 A thorough understanding of how tropical forests respond to climate is important to improve ecosystem process models and to reduce uncertainties in current and future global carbon balance calculations. The Amazon rainforest, a major contributor to the global carbon cycle, is subject to strong intra- and interannual variations in climate conditions. Understanding their effect on carbon fluxes between the ecosystem and the atmosphere and on the resulting carbon balance is still incomplete. We examined the long-term (over a 12-year period; 2004–2015) variations in gross primary productivity (GPP), ecosystem respiration (RE) and net ecosystem exchange (NEE) in a tropical rainforest in French Guiana and identified key climatic drivers influencing the changes. The study period was characterized by strong differences in climatic conditions among years, particularly differences in the intensity of the dry and wet seasons, as well as differences in annual carbon fluxes and balance. Annual average GPP varied from 3384.9 g C m−2 yr‒1 (95% CI [3320.7, 3445.9]) to 4061.2 g C m−2 yr‒1 (95% CI [3980.1, 4145.0]). RE varied even more than GPP, with a difference of 933.1 C m−2 yr‒1 between the minimum (3020.6 g C m−2 yr‒1; 95% CI [2889.4, 3051.3]) and maximum (3953.7 g C m−2 yr‒1; 95% CI [3887.6, 4019.6]) values. Although NEE showed large interannual variability (nine-fold), from ‒65.6 g C m−2 yr‒1 (95% CI [‒4.4, ‒126.0]) to ‒590.5 g C m−2 yr‒1 (95% CI [‒532.3, ‒651.6]), the forest remained a carbon sink over the 12-year period. A combination of global radiation (Rg), relative extractable water (REW) and soil temperature (Ts) explained 51% of the daily variations for GPP, 30% for RE and 39% for NEE. Global radiation was always the best predictor of these variations, but soil water content and temperature did also influence carbon fluxes and balance. Seasonally, Rg was the major controlling factor for GPP, RE and NEE during the wet season. During the dry season, variations in carbon fluxes and balance were poorly explained by climate factors. Yet, REW was the key driver of variations in NEE during the dry season. This study highlights that, over the long-term, carbon fluxes and balance in such tropical rainforest ecosystems are largely controlled by both radiation and water limitation. Even though variations in Rg have a greater impact on these fluxes, water limitation during seasonal droughts is enough to reduce ecosystem productivity, respiration and carbon uptake. The reduced precipitation expected in tropical rainforest areas under future climatic conditions will therefore strongly influence carbon fluxes and carbon uptake. This study also highlights the importance for land surface or dynamic global vegetation models to consider the main drivers of carbon fluxes and balance separately for dry and wet seasons. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/587726/1/Aguilos%20et%20al.%20-%202018%20-%20What%20drives%20long-term%20variations%20in%20carbon%20flux%20and%20balance%20in%20a%20tropical%20rainforest%20in%20French%20Guiana.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.agrformet.2018.02.009 10.1016/j.agrformet.2018.02.009 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agrformet.2018.02.009 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.agrformet.2018.02.009