Rubber plantation ageing controls soil biodiversity after land conversion from cassava

The rapid expansion of perennial crops is a major threat to biodiversity in Southeast Asia. The biodiversity losses related to the conversion of forest lands to oil palm or rubber plantations (RP) are well documented by recent studies. However, the impact of the conversion from intensively managed annual crops to perennial crops on soil biodiversity has not yet been addressed. This study aims at assessing the impact on soil biodiversity of a) the short-term effect of land use conversion from cassava crop to RP, and b) the long-term effect of RP ageing. Soil biodiversity (bacterial, fungal and macrofaunal), microbial activities and pedoclimatic characteristics were measured over a chronosequence of 1–25 years old of RP compared to cassava fields, the former crop, in Thailand. The conversion from cassava to young RP (1–3 yr) had a significant effect on microbial biomass and activities and fungal composition, but did not impact the bacterial and macrofaunal diversity. This effect of land use conversion could be explained by the change in land management due to the cultivation of pineapple in the inter-row of the young RP. Canopy closure appeared to be the main driver of soil biota shifts, as most of the biotic parameters, composition, abundance and activities were significantly modified after 7 years of RP. The changes of composition in older rubber plantations originated from the dominance of Trichoderma (fungi), Firmicutes (bacteria), and earthworms. Old rubber plantations (23–25 yr) harboured the highest microbial and macrofaunal biomass; however, they were also characterised by a significant decrease in bacterial richness. The change in pedoclimatic conditions across the rubber chronosequence, i.e. increase in soil moisture, litter and organic carbon content, was a stronger driver of soil biota evolution than land use conversion. The macrofaunal composition was more resistant to land use conversion than the bacterial composition, whereas the microbial biomass was sensitive to land use conversion, but showed resilience after 20 years. However, bacterial, fungal and macrofaunal diversity, macrofaunal and microbial biomass and microbial activities were all sensitive to RP ageing.

Saved in:
Bibliographic Details
Main Authors: Peerawat, Monrawee, Blaud, Aimeric, Trap, Jean, Chevallier, Tiphaine, Alonso, Pascal, Gay, Frédéric, Thaler, Philippe, Spor, Ayme, Sebag, David, Choosai, Chutinan, Suvannang, Nopmanee, Sajjaphan, Kannika, Brauman, Alain
Format: article biblioteca
Language:eng
Subjects:K10 - Production forestière, P34 - Biologie du sol, forêt, forêt tropicale, manioc, Hévéa, régime sylvicole, Houppier, mycorhizé à vésicule et arbuscule, texture du sol, mycorhization, biodiversité, biologie du sol, Bacteria, micro-organisme, utilisation des terres, âge, plantation forestière, lumière, http://aims.fao.org/aos/agrovoc/c_3062, http://aims.fao.org/aos/agrovoc/c_24904, http://aims.fao.org/aos/agrovoc/c_9649, http://aims.fao.org/aos/agrovoc/c_3588, http://aims.fao.org/aos/agrovoc/c_7070, http://aims.fao.org/aos/agrovoc/c_16172, http://aims.fao.org/aos/agrovoc/c_24415, http://aims.fao.org/aos/agrovoc/c_7199, http://aims.fao.org/aos/agrovoc/c_36163, http://aims.fao.org/aos/agrovoc/c_33949, http://aims.fao.org/aos/agrovoc/c_7160, http://aims.fao.org/aos/agrovoc/c_765, http://aims.fao.org/aos/agrovoc/c_4807, http://aims.fao.org/aos/agrovoc/c_4182, http://aims.fao.org/aos/agrovoc/c_186, http://aims.fao.org/aos/agrovoc/c_3048, http://aims.fao.org/aos/agrovoc/c_4322, http://aims.fao.org/aos/agrovoc/c_7260, http://aims.fao.org/aos/agrovoc/c_7701,
Online Access:http://agritrop.cirad.fr/587253/
http://agritrop.cirad.fr/587253/1/Peerawat%20soil%20biodiversity%20in%20rubber%20plantation.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-587253
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic K10 - Production forestière
P34 - Biologie du sol
forêt
forêt tropicale
manioc
Hévéa
régime sylvicole
Houppier
mycorhizé à vésicule et arbuscule
texture du sol
mycorhization
biodiversité
biologie du sol
Bacteria
micro-organisme
utilisation des terres
âge
plantation forestière
lumière
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_24904
http://aims.fao.org/aos/agrovoc/c_9649
http://aims.fao.org/aos/agrovoc/c_3588
http://aims.fao.org/aos/agrovoc/c_7070
http://aims.fao.org/aos/agrovoc/c_16172
http://aims.fao.org/aos/agrovoc/c_24415
http://aims.fao.org/aos/agrovoc/c_7199
http://aims.fao.org/aos/agrovoc/c_36163
http://aims.fao.org/aos/agrovoc/c_33949
http://aims.fao.org/aos/agrovoc/c_7160
http://aims.fao.org/aos/agrovoc/c_765
http://aims.fao.org/aos/agrovoc/c_4807
http://aims.fao.org/aos/agrovoc/c_4182
http://aims.fao.org/aos/agrovoc/c_186
http://aims.fao.org/aos/agrovoc/c_3048
http://aims.fao.org/aos/agrovoc/c_4322
http://aims.fao.org/aos/agrovoc/c_7260
http://aims.fao.org/aos/agrovoc/c_7701
K10 - Production forestière
P34 - Biologie du sol
forêt
forêt tropicale
manioc
Hévéa
régime sylvicole
Houppier
mycorhizé à vésicule et arbuscule
texture du sol
mycorhization
biodiversité
biologie du sol
Bacteria
micro-organisme
utilisation des terres
âge
plantation forestière
lumière
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_24904
http://aims.fao.org/aos/agrovoc/c_9649
http://aims.fao.org/aos/agrovoc/c_3588
http://aims.fao.org/aos/agrovoc/c_7070
http://aims.fao.org/aos/agrovoc/c_16172
http://aims.fao.org/aos/agrovoc/c_24415
http://aims.fao.org/aos/agrovoc/c_7199
http://aims.fao.org/aos/agrovoc/c_36163
http://aims.fao.org/aos/agrovoc/c_33949
http://aims.fao.org/aos/agrovoc/c_7160
http://aims.fao.org/aos/agrovoc/c_765
http://aims.fao.org/aos/agrovoc/c_4807
http://aims.fao.org/aos/agrovoc/c_4182
http://aims.fao.org/aos/agrovoc/c_186
http://aims.fao.org/aos/agrovoc/c_3048
http://aims.fao.org/aos/agrovoc/c_4322
http://aims.fao.org/aos/agrovoc/c_7260
http://aims.fao.org/aos/agrovoc/c_7701
spellingShingle K10 - Production forestière
P34 - Biologie du sol
forêt
forêt tropicale
manioc
Hévéa
régime sylvicole
Houppier
mycorhizé à vésicule et arbuscule
texture du sol
mycorhization
biodiversité
biologie du sol
Bacteria
micro-organisme
utilisation des terres
âge
plantation forestière
lumière
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_24904
http://aims.fao.org/aos/agrovoc/c_9649
http://aims.fao.org/aos/agrovoc/c_3588
http://aims.fao.org/aos/agrovoc/c_7070
http://aims.fao.org/aos/agrovoc/c_16172
http://aims.fao.org/aos/agrovoc/c_24415
http://aims.fao.org/aos/agrovoc/c_7199
http://aims.fao.org/aos/agrovoc/c_36163
http://aims.fao.org/aos/agrovoc/c_33949
http://aims.fao.org/aos/agrovoc/c_7160
http://aims.fao.org/aos/agrovoc/c_765
http://aims.fao.org/aos/agrovoc/c_4807
http://aims.fao.org/aos/agrovoc/c_4182
http://aims.fao.org/aos/agrovoc/c_186
http://aims.fao.org/aos/agrovoc/c_3048
http://aims.fao.org/aos/agrovoc/c_4322
http://aims.fao.org/aos/agrovoc/c_7260
http://aims.fao.org/aos/agrovoc/c_7701
K10 - Production forestière
P34 - Biologie du sol
forêt
forêt tropicale
manioc
Hévéa
régime sylvicole
Houppier
mycorhizé à vésicule et arbuscule
texture du sol
mycorhization
biodiversité
biologie du sol
Bacteria
micro-organisme
utilisation des terres
âge
plantation forestière
lumière
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_24904
http://aims.fao.org/aos/agrovoc/c_9649
http://aims.fao.org/aos/agrovoc/c_3588
http://aims.fao.org/aos/agrovoc/c_7070
http://aims.fao.org/aos/agrovoc/c_16172
http://aims.fao.org/aos/agrovoc/c_24415
http://aims.fao.org/aos/agrovoc/c_7199
http://aims.fao.org/aos/agrovoc/c_36163
http://aims.fao.org/aos/agrovoc/c_33949
http://aims.fao.org/aos/agrovoc/c_7160
http://aims.fao.org/aos/agrovoc/c_765
http://aims.fao.org/aos/agrovoc/c_4807
http://aims.fao.org/aos/agrovoc/c_4182
http://aims.fao.org/aos/agrovoc/c_186
http://aims.fao.org/aos/agrovoc/c_3048
http://aims.fao.org/aos/agrovoc/c_4322
http://aims.fao.org/aos/agrovoc/c_7260
http://aims.fao.org/aos/agrovoc/c_7701
Peerawat, Monrawee
Blaud, Aimeric
Trap, Jean
Chevallier, Tiphaine
Alonso, Pascal
Gay, Frédéric
Thaler, Philippe
Spor, Ayme
Sebag, David
Choosai, Chutinan
Suvannang, Nopmanee
Sajjaphan, Kannika
Brauman, Alain
Rubber plantation ageing controls soil biodiversity after land conversion from cassava
description The rapid expansion of perennial crops is a major threat to biodiversity in Southeast Asia. The biodiversity losses related to the conversion of forest lands to oil palm or rubber plantations (RP) are well documented by recent studies. However, the impact of the conversion from intensively managed annual crops to perennial crops on soil biodiversity has not yet been addressed. This study aims at assessing the impact on soil biodiversity of a) the short-term effect of land use conversion from cassava crop to RP, and b) the long-term effect of RP ageing. Soil biodiversity (bacterial, fungal and macrofaunal), microbial activities and pedoclimatic characteristics were measured over a chronosequence of 1–25 years old of RP compared to cassava fields, the former crop, in Thailand. The conversion from cassava to young RP (1–3 yr) had a significant effect on microbial biomass and activities and fungal composition, but did not impact the bacterial and macrofaunal diversity. This effect of land use conversion could be explained by the change in land management due to the cultivation of pineapple in the inter-row of the young RP. Canopy closure appeared to be the main driver of soil biota shifts, as most of the biotic parameters, composition, abundance and activities were significantly modified after 7 years of RP. The changes of composition in older rubber plantations originated from the dominance of Trichoderma (fungi), Firmicutes (bacteria), and earthworms. Old rubber plantations (23–25 yr) harboured the highest microbial and macrofaunal biomass; however, they were also characterised by a significant decrease in bacterial richness. The change in pedoclimatic conditions across the rubber chronosequence, i.e. increase in soil moisture, litter and organic carbon content, was a stronger driver of soil biota evolution than land use conversion. The macrofaunal composition was more resistant to land use conversion than the bacterial composition, whereas the microbial biomass was sensitive to land use conversion, but showed resilience after 20 years. However, bacterial, fungal and macrofaunal diversity, macrofaunal and microbial biomass and microbial activities were all sensitive to RP ageing.
format article
topic_facet K10 - Production forestière
P34 - Biologie du sol
forêt
forêt tropicale
manioc
Hévéa
régime sylvicole
Houppier
mycorhizé à vésicule et arbuscule
texture du sol
mycorhization
biodiversité
biologie du sol
Bacteria
micro-organisme
utilisation des terres
âge
plantation forestière
lumière
http://aims.fao.org/aos/agrovoc/c_3062
http://aims.fao.org/aos/agrovoc/c_24904
http://aims.fao.org/aos/agrovoc/c_9649
http://aims.fao.org/aos/agrovoc/c_3588
http://aims.fao.org/aos/agrovoc/c_7070
http://aims.fao.org/aos/agrovoc/c_16172
http://aims.fao.org/aos/agrovoc/c_24415
http://aims.fao.org/aos/agrovoc/c_7199
http://aims.fao.org/aos/agrovoc/c_36163
http://aims.fao.org/aos/agrovoc/c_33949
http://aims.fao.org/aos/agrovoc/c_7160
http://aims.fao.org/aos/agrovoc/c_765
http://aims.fao.org/aos/agrovoc/c_4807
http://aims.fao.org/aos/agrovoc/c_4182
http://aims.fao.org/aos/agrovoc/c_186
http://aims.fao.org/aos/agrovoc/c_3048
http://aims.fao.org/aos/agrovoc/c_4322
http://aims.fao.org/aos/agrovoc/c_7260
http://aims.fao.org/aos/agrovoc/c_7701
author Peerawat, Monrawee
Blaud, Aimeric
Trap, Jean
Chevallier, Tiphaine
Alonso, Pascal
Gay, Frédéric
Thaler, Philippe
Spor, Ayme
Sebag, David
Choosai, Chutinan
Suvannang, Nopmanee
Sajjaphan, Kannika
Brauman, Alain
author_facet Peerawat, Monrawee
Blaud, Aimeric
Trap, Jean
Chevallier, Tiphaine
Alonso, Pascal
Gay, Frédéric
Thaler, Philippe
Spor, Ayme
Sebag, David
Choosai, Chutinan
Suvannang, Nopmanee
Sajjaphan, Kannika
Brauman, Alain
author_sort Peerawat, Monrawee
title Rubber plantation ageing controls soil biodiversity after land conversion from cassava
title_short Rubber plantation ageing controls soil biodiversity after land conversion from cassava
title_full Rubber plantation ageing controls soil biodiversity after land conversion from cassava
title_fullStr Rubber plantation ageing controls soil biodiversity after land conversion from cassava
title_full_unstemmed Rubber plantation ageing controls soil biodiversity after land conversion from cassava
title_sort rubber plantation ageing controls soil biodiversity after land conversion from cassava
url http://agritrop.cirad.fr/587253/
http://agritrop.cirad.fr/587253/1/Peerawat%20soil%20biodiversity%20in%20rubber%20plantation.pdf
work_keys_str_mv AT peerawatmonrawee rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT blaudaimeric rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT trapjean rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT chevalliertiphaine rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT alonsopascal rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT gayfrederic rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT thalerphilippe rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT sporayme rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT sebagdavid rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT choosaichutinan rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT suvannangnopmanee rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT sajjaphankannika rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
AT braumanalain rubberplantationageingcontrolssoilbiodiversityafterlandconversionfromcassava
_version_ 1792499448184569856
spelling dig-cirad-fr-5872532024-01-29T00:52:52Z http://agritrop.cirad.fr/587253/ http://agritrop.cirad.fr/587253/ Rubber plantation ageing controls soil biodiversity after land conversion from cassava. Peerawat Monrawee, Blaud Aimeric, Trap Jean, Chevallier Tiphaine, Alonso Pascal, Gay Frédéric, Thaler Philippe, Spor Ayme, Sebag David, Choosai Chutinan, Suvannang Nopmanee, Sajjaphan Kannika, Brauman Alain. 2018. Agriculture, Ecosystems and Environment, 257 : 92-102.https://doi.org/10.1016/j.agee.2018.01.034 <https://doi.org/10.1016/j.agee.2018.01.034> Rubber plantation ageing controls soil biodiversity after land conversion from cassava Peerawat, Monrawee Blaud, Aimeric Trap, Jean Chevallier, Tiphaine Alonso, Pascal Gay, Frédéric Thaler, Philippe Spor, Ayme Sebag, David Choosai, Chutinan Suvannang, Nopmanee Sajjaphan, Kannika Brauman, Alain eng 2018 Agriculture, Ecosystems and Environment K10 - Production forestière P34 - Biologie du sol forêt forêt tropicale manioc Hévéa régime sylvicole Houppier mycorhizé à vésicule et arbuscule texture du sol mycorhization biodiversité biologie du sol Bacteria micro-organisme utilisation des terres âge plantation forestière lumière http://aims.fao.org/aos/agrovoc/c_3062 http://aims.fao.org/aos/agrovoc/c_24904 http://aims.fao.org/aos/agrovoc/c_9649 http://aims.fao.org/aos/agrovoc/c_3588 http://aims.fao.org/aos/agrovoc/c_7070 http://aims.fao.org/aos/agrovoc/c_16172 http://aims.fao.org/aos/agrovoc/c_24415 http://aims.fao.org/aos/agrovoc/c_7199 http://aims.fao.org/aos/agrovoc/c_36163 http://aims.fao.org/aos/agrovoc/c_33949 http://aims.fao.org/aos/agrovoc/c_7160 http://aims.fao.org/aos/agrovoc/c_765 http://aims.fao.org/aos/agrovoc/c_4807 http://aims.fao.org/aos/agrovoc/c_4182 http://aims.fao.org/aos/agrovoc/c_186 http://aims.fao.org/aos/agrovoc/c_3048 http://aims.fao.org/aos/agrovoc/c_4322 Asie du Sud-Est Thaïlande http://aims.fao.org/aos/agrovoc/c_7260 http://aims.fao.org/aos/agrovoc/c_7701 The rapid expansion of perennial crops is a major threat to biodiversity in Southeast Asia. The biodiversity losses related to the conversion of forest lands to oil palm or rubber plantations (RP) are well documented by recent studies. However, the impact of the conversion from intensively managed annual crops to perennial crops on soil biodiversity has not yet been addressed. This study aims at assessing the impact on soil biodiversity of a) the short-term effect of land use conversion from cassava crop to RP, and b) the long-term effect of RP ageing. Soil biodiversity (bacterial, fungal and macrofaunal), microbial activities and pedoclimatic characteristics were measured over a chronosequence of 1–25 years old of RP compared to cassava fields, the former crop, in Thailand. The conversion from cassava to young RP (1–3 yr) had a significant effect on microbial biomass and activities and fungal composition, but did not impact the bacterial and macrofaunal diversity. This effect of land use conversion could be explained by the change in land management due to the cultivation of pineapple in the inter-row of the young RP. Canopy closure appeared to be the main driver of soil biota shifts, as most of the biotic parameters, composition, abundance and activities were significantly modified after 7 years of RP. The changes of composition in older rubber plantations originated from the dominance of Trichoderma (fungi), Firmicutes (bacteria), and earthworms. Old rubber plantations (23–25 yr) harboured the highest microbial and macrofaunal biomass; however, they were also characterised by a significant decrease in bacterial richness. The change in pedoclimatic conditions across the rubber chronosequence, i.e. increase in soil moisture, litter and organic carbon content, was a stronger driver of soil biota evolution than land use conversion. The macrofaunal composition was more resistant to land use conversion than the bacterial composition, whereas the microbial biomass was sensitive to land use conversion, but showed resilience after 20 years. However, bacterial, fungal and macrofaunal diversity, macrofaunal and microbial biomass and microbial activities were all sensitive to RP ageing. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/587253/1/Peerawat%20soil%20biodiversity%20in%20rubber%20plantation.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.agee.2018.01.034 10.1016/j.agee.2018.01.034 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.agee.2018.01.034 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.agee.2018.01.034