Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)

Background: African wildlife experienced a reduction in population size and geographical distribution over the last millennium, particularly since the 19th century as a result of human demographic expansion, wildlife overexploitation, habitat degradation and cattle-borne diseases. In many areas, ungulate populations are now largely confined within a network of loosely connected protected areas. These metapopulations face gene flow restriction and run the risk of genetic diversity erosion. In this context, we assessed the "genetic health" of free ranging southern African Cape buffalo populations (S.c. caffer) and investigated the origins of their current genetic structure. The analyses were based on 264 samples from 6 southern African countries that were genotyped for 14 autosomal and 3 Y-chromosomal microsatellites. Results: The analyses differentiated three significant genetic clusters, hereafter referred to as Northern (N), Central (C) and Southern (S) clusters. The results suggest that splitting of the N and C clusters occurred around 6000 to 8400 years ago. Both N and C clusters displayed high genetic diversity (mean allelic richness (Ar) of 7.217, average genetic diversity over loci of 0.594, mean private alleles (Pa) of 11), low differentiation, and an absence of an inbreeding depression signal (mean FIS = 0.037). The third (S) cluster, a tiny population enclosed within a small isolated protected area, likely originated from a more recent isolation and experienced genetic drift (FIS = 0.062, mean Ar = 6.160, Pa = 2). This study also highlighted the impact of translocations between clusters on the genetic structure of several African buffalo populations. Lower differentiation estimates were observed between C and N sampling localities that experienced translocation over the last century. Conclusions: We showed that the current genetic structure of southern African Cape buffalo populations results from both ancient and recent processes. The splitting time of N and C clusters suggests that the current pattern results from human-induced factors and/or from the aridification process that occurred during the Holocene period. The more recent S cluster genetic drift probably results of processes that occurred over the last centuries (habitat fragmentation, diseases). Management practices of African buffalo populations should consider the micro-evolutionary changes highlighted in the present study.

Saved in:
Bibliographic Details
Main Authors: Smitz, Nathalie, Cornélis, Daniel, Chardonnet, Philippe, Caron, Alexandre, De Garine-Wichatitsky, Michel, Jori, Ferran, Mouton, Alice, Latinne, Alice, Pigneur, Lise-Marie, Melletti, Mario, Kanapeckas, Kimberly L., Marescaux, Jonathan, Lopes Pereira, Carlos, Michaux, Johan
Format: article biblioteca
Language:eng
Subjects:L10 - Génétique et amélioration des animaux, L60 - Taxonomie et géographie animales, P01 - Conservation de la nature et ressources foncières, buffle africain, génétique des populations, distribution géographique, conservation des ressources génétiques, phylogénie, marqueur génétique, microsatellite, translocation, génotype, évolution, http://aims.fao.org/aos/agrovoc/c_167, http://aims.fao.org/aos/agrovoc/c_34326, http://aims.fao.org/aos/agrovoc/c_5083, http://aims.fao.org/aos/agrovoc/c_37280, http://aims.fao.org/aos/agrovoc/c_13325, http://aims.fao.org/aos/agrovoc/c_24030, http://aims.fao.org/aos/agrovoc/c_36574, http://aims.fao.org/aos/agrovoc/c_7869, http://aims.fao.org/aos/agrovoc/c_3225, http://aims.fao.org/aos/agrovoc/c_2745, http://aims.fao.org/aos/agrovoc/c_7265, http://aims.fao.org/aos/agrovoc/c_8516, http://aims.fao.org/aos/agrovoc/c_1030, http://aims.fao.org/aos/agrovoc/c_7252, http://aims.fao.org/aos/agrovoc/c_4964, http://aims.fao.org/aos/agrovoc/c_8501, http://aims.fao.org/aos/agrovoc/c_417,
Online Access:http://agritrop.cirad.fr/574440/
http://agritrop.cirad.fr/574440/1/document_574440.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-574440
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic L10 - Génétique et amélioration des animaux
L60 - Taxonomie et géographie animales
P01 - Conservation de la nature et ressources foncières
buffle africain
génétique des populations
distribution géographique
conservation des ressources génétiques
phylogénie
marqueur génétique
microsatellite
translocation
génotype
évolution
http://aims.fao.org/aos/agrovoc/c_167
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37280
http://aims.fao.org/aos/agrovoc/c_13325
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_36574
http://aims.fao.org/aos/agrovoc/c_7869
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_2745
http://aims.fao.org/aos/agrovoc/c_7265
http://aims.fao.org/aos/agrovoc/c_8516
http://aims.fao.org/aos/agrovoc/c_1030
http://aims.fao.org/aos/agrovoc/c_7252
http://aims.fao.org/aos/agrovoc/c_4964
http://aims.fao.org/aos/agrovoc/c_8501
http://aims.fao.org/aos/agrovoc/c_417
L10 - Génétique et amélioration des animaux
L60 - Taxonomie et géographie animales
P01 - Conservation de la nature et ressources foncières
buffle africain
génétique des populations
distribution géographique
conservation des ressources génétiques
phylogénie
marqueur génétique
microsatellite
translocation
génotype
évolution
http://aims.fao.org/aos/agrovoc/c_167
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37280
http://aims.fao.org/aos/agrovoc/c_13325
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_36574
http://aims.fao.org/aos/agrovoc/c_7869
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_2745
http://aims.fao.org/aos/agrovoc/c_7265
http://aims.fao.org/aos/agrovoc/c_8516
http://aims.fao.org/aos/agrovoc/c_1030
http://aims.fao.org/aos/agrovoc/c_7252
http://aims.fao.org/aos/agrovoc/c_4964
http://aims.fao.org/aos/agrovoc/c_8501
http://aims.fao.org/aos/agrovoc/c_417
spellingShingle L10 - Génétique et amélioration des animaux
L60 - Taxonomie et géographie animales
P01 - Conservation de la nature et ressources foncières
buffle africain
génétique des populations
distribution géographique
conservation des ressources génétiques
phylogénie
marqueur génétique
microsatellite
translocation
génotype
évolution
http://aims.fao.org/aos/agrovoc/c_167
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37280
http://aims.fao.org/aos/agrovoc/c_13325
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_36574
http://aims.fao.org/aos/agrovoc/c_7869
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_2745
http://aims.fao.org/aos/agrovoc/c_7265
http://aims.fao.org/aos/agrovoc/c_8516
http://aims.fao.org/aos/agrovoc/c_1030
http://aims.fao.org/aos/agrovoc/c_7252
http://aims.fao.org/aos/agrovoc/c_4964
http://aims.fao.org/aos/agrovoc/c_8501
http://aims.fao.org/aos/agrovoc/c_417
L10 - Génétique et amélioration des animaux
L60 - Taxonomie et géographie animales
P01 - Conservation de la nature et ressources foncières
buffle africain
génétique des populations
distribution géographique
conservation des ressources génétiques
phylogénie
marqueur génétique
microsatellite
translocation
génotype
évolution
http://aims.fao.org/aos/agrovoc/c_167
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37280
http://aims.fao.org/aos/agrovoc/c_13325
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_36574
http://aims.fao.org/aos/agrovoc/c_7869
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_2745
http://aims.fao.org/aos/agrovoc/c_7265
http://aims.fao.org/aos/agrovoc/c_8516
http://aims.fao.org/aos/agrovoc/c_1030
http://aims.fao.org/aos/agrovoc/c_7252
http://aims.fao.org/aos/agrovoc/c_4964
http://aims.fao.org/aos/agrovoc/c_8501
http://aims.fao.org/aos/agrovoc/c_417
Smitz, Nathalie
Cornélis, Daniel
Chardonnet, Philippe
Caron, Alexandre
De Garine-Wichatitsky, Michel
Jori, Ferran
Mouton, Alice
Latinne, Alice
Pigneur, Lise-Marie
Melletti, Mario
Kanapeckas, Kimberly L.
Marescaux, Jonathan
Lopes Pereira, Carlos
Michaux, Johan
Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)
description Background: African wildlife experienced a reduction in population size and geographical distribution over the last millennium, particularly since the 19th century as a result of human demographic expansion, wildlife overexploitation, habitat degradation and cattle-borne diseases. In many areas, ungulate populations are now largely confined within a network of loosely connected protected areas. These metapopulations face gene flow restriction and run the risk of genetic diversity erosion. In this context, we assessed the "genetic health" of free ranging southern African Cape buffalo populations (S.c. caffer) and investigated the origins of their current genetic structure. The analyses were based on 264 samples from 6 southern African countries that were genotyped for 14 autosomal and 3 Y-chromosomal microsatellites. Results: The analyses differentiated three significant genetic clusters, hereafter referred to as Northern (N), Central (C) and Southern (S) clusters. The results suggest that splitting of the N and C clusters occurred around 6000 to 8400 years ago. Both N and C clusters displayed high genetic diversity (mean allelic richness (Ar) of 7.217, average genetic diversity over loci of 0.594, mean private alleles (Pa) of 11), low differentiation, and an absence of an inbreeding depression signal (mean FIS = 0.037). The third (S) cluster, a tiny population enclosed within a small isolated protected area, likely originated from a more recent isolation and experienced genetic drift (FIS = 0.062, mean Ar = 6.160, Pa = 2). This study also highlighted the impact of translocations between clusters on the genetic structure of several African buffalo populations. Lower differentiation estimates were observed between C and N sampling localities that experienced translocation over the last century. Conclusions: We showed that the current genetic structure of southern African Cape buffalo populations results from both ancient and recent processes. The splitting time of N and C clusters suggests that the current pattern results from human-induced factors and/or from the aridification process that occurred during the Holocene period. The more recent S cluster genetic drift probably results of processes that occurred over the last centuries (habitat fragmentation, diseases). Management practices of African buffalo populations should consider the micro-evolutionary changes highlighted in the present study.
format article
topic_facet L10 - Génétique et amélioration des animaux
L60 - Taxonomie et géographie animales
P01 - Conservation de la nature et ressources foncières
buffle africain
génétique des populations
distribution géographique
conservation des ressources génétiques
phylogénie
marqueur génétique
microsatellite
translocation
génotype
évolution
http://aims.fao.org/aos/agrovoc/c_167
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_5083
http://aims.fao.org/aos/agrovoc/c_37280
http://aims.fao.org/aos/agrovoc/c_13325
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_36574
http://aims.fao.org/aos/agrovoc/c_7869
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_2745
http://aims.fao.org/aos/agrovoc/c_7265
http://aims.fao.org/aos/agrovoc/c_8516
http://aims.fao.org/aos/agrovoc/c_1030
http://aims.fao.org/aos/agrovoc/c_7252
http://aims.fao.org/aos/agrovoc/c_4964
http://aims.fao.org/aos/agrovoc/c_8501
http://aims.fao.org/aos/agrovoc/c_417
author Smitz, Nathalie
Cornélis, Daniel
Chardonnet, Philippe
Caron, Alexandre
De Garine-Wichatitsky, Michel
Jori, Ferran
Mouton, Alice
Latinne, Alice
Pigneur, Lise-Marie
Melletti, Mario
Kanapeckas, Kimberly L.
Marescaux, Jonathan
Lopes Pereira, Carlos
Michaux, Johan
author_facet Smitz, Nathalie
Cornélis, Daniel
Chardonnet, Philippe
Caron, Alexandre
De Garine-Wichatitsky, Michel
Jori, Ferran
Mouton, Alice
Latinne, Alice
Pigneur, Lise-Marie
Melletti, Mario
Kanapeckas, Kimberly L.
Marescaux, Jonathan
Lopes Pereira, Carlos
Michaux, Johan
author_sort Smitz, Nathalie
title Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)
title_short Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)
title_full Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)
title_fullStr Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)
title_full_unstemmed Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer)
title_sort genetic structure of fragmented southern populations of african cape buffalo (syncerus caffer caffer)
url http://agritrop.cirad.fr/574440/
http://agritrop.cirad.fr/574440/1/document_574440.pdf
work_keys_str_mv AT smitznathalie geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT cornelisdaniel geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT chardonnetphilippe geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT caronalexandre geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT degarinewichatitskymichel geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT joriferran geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT moutonalice geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT latinnealice geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT pigneurlisemarie geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT mellettimario geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT kanapeckaskimberlyl geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT marescauxjonathan geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT lopespereiracarlos geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
AT michauxjohan geneticstructureoffragmentedsouthernpopulationsofafricancapebuffalosynceruscaffercaffer
_version_ 1792498716086632448
spelling dig-cirad-fr-5744402024-01-28T22:19:13Z http://agritrop.cirad.fr/574440/ http://agritrop.cirad.fr/574440/ Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer). Smitz Nathalie, Cornélis Daniel, Chardonnet Philippe, Caron Alexandre, De Garine-Wichatitsky Michel, Jori Ferran, Mouton Alice, Latinne Alice, Pigneur Lise-Marie, Melletti Mario, Kanapeckas Kimberly L., Marescaux Jonathan, Lopes Pereira Carlos, Michaux Johan. 2014. BMC Evolutionary Biology, 14 (203), 19 p.https://doi.org/10.1186/s12862-014-0203-2 <https://doi.org/10.1186/s12862-014-0203-2> Genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer) Smitz, Nathalie Cornélis, Daniel Chardonnet, Philippe Caron, Alexandre De Garine-Wichatitsky, Michel Jori, Ferran Mouton, Alice Latinne, Alice Pigneur, Lise-Marie Melletti, Mario Kanapeckas, Kimberly L. Marescaux, Jonathan Lopes Pereira, Carlos Michaux, Johan eng 2014 BMC Evolutionary Biology L10 - Génétique et amélioration des animaux L60 - Taxonomie et géographie animales P01 - Conservation de la nature et ressources foncières buffle africain génétique des populations distribution géographique conservation des ressources génétiques phylogénie marqueur génétique microsatellite translocation génotype évolution http://aims.fao.org/aos/agrovoc/c_167 http://aims.fao.org/aos/agrovoc/c_34326 http://aims.fao.org/aos/agrovoc/c_5083 http://aims.fao.org/aos/agrovoc/c_37280 http://aims.fao.org/aos/agrovoc/c_13325 http://aims.fao.org/aos/agrovoc/c_24030 http://aims.fao.org/aos/agrovoc/c_36574 http://aims.fao.org/aos/agrovoc/c_7869 http://aims.fao.org/aos/agrovoc/c_3225 http://aims.fao.org/aos/agrovoc/c_2745 Afrique australe Zimbabwe Botswana Afrique du Sud Mozambique Zambie Angola http://aims.fao.org/aos/agrovoc/c_7265 http://aims.fao.org/aos/agrovoc/c_8516 http://aims.fao.org/aos/agrovoc/c_1030 http://aims.fao.org/aos/agrovoc/c_7252 http://aims.fao.org/aos/agrovoc/c_4964 http://aims.fao.org/aos/agrovoc/c_8501 http://aims.fao.org/aos/agrovoc/c_417 Background: African wildlife experienced a reduction in population size and geographical distribution over the last millennium, particularly since the 19th century as a result of human demographic expansion, wildlife overexploitation, habitat degradation and cattle-borne diseases. In many areas, ungulate populations are now largely confined within a network of loosely connected protected areas. These metapopulations face gene flow restriction and run the risk of genetic diversity erosion. In this context, we assessed the "genetic health" of free ranging southern African Cape buffalo populations (S.c. caffer) and investigated the origins of their current genetic structure. The analyses were based on 264 samples from 6 southern African countries that were genotyped for 14 autosomal and 3 Y-chromosomal microsatellites. Results: The analyses differentiated three significant genetic clusters, hereafter referred to as Northern (N), Central (C) and Southern (S) clusters. The results suggest that splitting of the N and C clusters occurred around 6000 to 8400 years ago. Both N and C clusters displayed high genetic diversity (mean allelic richness (Ar) of 7.217, average genetic diversity over loci of 0.594, mean private alleles (Pa) of 11), low differentiation, and an absence of an inbreeding depression signal (mean FIS = 0.037). The third (S) cluster, a tiny population enclosed within a small isolated protected area, likely originated from a more recent isolation and experienced genetic drift (FIS = 0.062, mean Ar = 6.160, Pa = 2). This study also highlighted the impact of translocations between clusters on the genetic structure of several African buffalo populations. Lower differentiation estimates were observed between C and N sampling localities that experienced translocation over the last century. Conclusions: We showed that the current genetic structure of southern African Cape buffalo populations results from both ancient and recent processes. The splitting time of N and C clusters suggests that the current pattern results from human-induced factors and/or from the aridification process that occurred during the Holocene period. The more recent S cluster genetic drift probably results of processes that occurred over the last centuries (habitat fragmentation, diseases). Management practices of African buffalo populations should consider the micro-evolutionary changes highlighted in the present study. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/574440/1/document_574440.pdf application/pdf Cirad license info:eu-repo/semantics/openAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1186/s12862-014-0203-2 10.1186/s12862-014-0203-2 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12862-014-0203-2 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1186/s12862-014-0203-2