A comparative study on satellite- and model-based crop phenology in West Africa

Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2) product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks), provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI) temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007) and temporal (two sites from 2002 to 2008) differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i) the satellite-derived start-of-season (SOS) was detected approximately 30 days before the model-derived SOS; and (ii) the satellite-derived end-of-season (EOS) was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better estimate of vegetation phenological changes that integrate rainfall variability, land cover diversity, and the main farmer practices.

Saved in:
Bibliographic Details
Main Authors: Vintrou, Elodie, Bégué, Agnès, Baron, Christian, Saad, Alexandre, Lo Seen, Danny, Traoré, Seydou B.
Format: article biblioteca
Language:eng
Published: MDPI
Subjects:U30 - Méthodes de recherche, U10 - Informatique, mathématiques et statistiques, F01 - Culture des plantes, E90 - Structure agraire, modèle, télédétection, phénologie, analyse d'image, terre cultivée, couverture végétale, plante de culture, facteur climatique, zone agroclimatique, pratique culturale, variété, imagerie par satellite, http://aims.fao.org/aos/agrovoc/c_4881, http://aims.fao.org/aos/agrovoc/c_6498, http://aims.fao.org/aos/agrovoc/c_5774, http://aims.fao.org/aos/agrovoc/c_36762, http://aims.fao.org/aos/agrovoc/c_16212, http://aims.fao.org/aos/agrovoc/c_25409, http://aims.fao.org/aos/agrovoc/c_1972, http://aims.fao.org/aos/agrovoc/c_29554, http://aims.fao.org/aos/agrovoc/c_28638, http://aims.fao.org/aos/agrovoc/c_2018, http://aims.fao.org/aos/agrovoc/c_8157, http://aims.fao.org/aos/agrovoc/c_36761, http://aims.fao.org/aos/agrovoc/c_4540,
Online Access:http://agritrop.cirad.fr/573921/
http://agritrop.cirad.fr/573921/1/document_573921.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-573921
record_format koha
spelling dig-cirad-fr-5739212024-12-20T11:25:53Z http://agritrop.cirad.fr/573921/ http://agritrop.cirad.fr/573921/ A comparative study on satellite- and model-based crop phenology in West Africa. Vintrou Elodie, Bégué Agnès, Baron Christian, Saad Alexandre, Lo Seen Danny, Traoré Seydou B.. 2014. Remote Sensing, 6 (2) : 1367-1389.https://doi.org/10.3390/rs6021367 <https://doi.org/10.3390/rs6021367> A comparative study on satellite- and model-based crop phenology in West Africa Vintrou, Elodie Bégué, Agnès Baron, Christian Saad, Alexandre Lo Seen, Danny Traoré, Seydou B. eng 2014 MDPI Remote Sensing U30 - Méthodes de recherche U10 - Informatique, mathématiques et statistiques F01 - Culture des plantes E90 - Structure agraire modèle télédétection phénologie analyse d'image terre cultivée couverture végétale plante de culture facteur climatique zone agroclimatique pratique culturale variété imagerie par satellite http://aims.fao.org/aos/agrovoc/c_4881 http://aims.fao.org/aos/agrovoc/c_6498 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_16212 http://aims.fao.org/aos/agrovoc/c_25409 http://aims.fao.org/aos/agrovoc/c_1972 http://aims.fao.org/aos/agrovoc/c_29554 http://aims.fao.org/aos/agrovoc/c_28638 http://aims.fao.org/aos/agrovoc/c_2018 http://aims.fao.org/aos/agrovoc/c_8157 http://aims.fao.org/aos/agrovoc/c_36761 Mali http://aims.fao.org/aos/agrovoc/c_4540 Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2) product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks), provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI) temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007) and temporal (two sites from 2002 to 2008) differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i) the satellite-derived start-of-season (SOS) was detected approximately 30 days before the model-derived SOS; and (ii) the satellite-derived end-of-season (EOS) was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better estimate of vegetation phenological changes that integrate rainfall variability, land cover diversity, and the main farmer practices. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/573921/1/document_573921.pdf application/pdf Cirad license info:eu-repo/semantics/openAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.3390/rs6021367 10.3390/rs6021367 info:eu-repo/semantics/altIdentifier/doi/10.3390/rs6021367 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.3390/rs6021367
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
F01 - Culture des plantes
E90 - Structure agraire
modèle
télédétection
phénologie
analyse d'image
terre cultivée
couverture végétale
plante de culture
facteur climatique
zone agroclimatique
pratique culturale
variété
imagerie par satellite
http://aims.fao.org/aos/agrovoc/c_4881
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_36762
http://aims.fao.org/aos/agrovoc/c_16212
http://aims.fao.org/aos/agrovoc/c_25409
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_29554
http://aims.fao.org/aos/agrovoc/c_28638
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_8157
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_4540
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
F01 - Culture des plantes
E90 - Structure agraire
modèle
télédétection
phénologie
analyse d'image
terre cultivée
couverture végétale
plante de culture
facteur climatique
zone agroclimatique
pratique culturale
variété
imagerie par satellite
http://aims.fao.org/aos/agrovoc/c_4881
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_36762
http://aims.fao.org/aos/agrovoc/c_16212
http://aims.fao.org/aos/agrovoc/c_25409
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_29554
http://aims.fao.org/aos/agrovoc/c_28638
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_8157
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_4540
spellingShingle U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
F01 - Culture des plantes
E90 - Structure agraire
modèle
télédétection
phénologie
analyse d'image
terre cultivée
couverture végétale
plante de culture
facteur climatique
zone agroclimatique
pratique culturale
variété
imagerie par satellite
http://aims.fao.org/aos/agrovoc/c_4881
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_36762
http://aims.fao.org/aos/agrovoc/c_16212
http://aims.fao.org/aos/agrovoc/c_25409
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_29554
http://aims.fao.org/aos/agrovoc/c_28638
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_8157
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_4540
U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
F01 - Culture des plantes
E90 - Structure agraire
modèle
télédétection
phénologie
analyse d'image
terre cultivée
couverture végétale
plante de culture
facteur climatique
zone agroclimatique
pratique culturale
variété
imagerie par satellite
http://aims.fao.org/aos/agrovoc/c_4881
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_36762
http://aims.fao.org/aos/agrovoc/c_16212
http://aims.fao.org/aos/agrovoc/c_25409
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_29554
http://aims.fao.org/aos/agrovoc/c_28638
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_8157
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_4540
Vintrou, Elodie
Bégué, Agnès
Baron, Christian
Saad, Alexandre
Lo Seen, Danny
Traoré, Seydou B.
A comparative study on satellite- and model-based crop phenology in West Africa
description Crop phenology is essential for evaluating crop production in the food insecure regions of West Africa. The aim of the paper is to study whether satellite observation of plant phenology are consistent with ground knowledge of crop cycles as expressed in agro-simulations. We used phenological variables from a MODIS Land Cover Dynamics (MCD12Q2) product and examined whether they reproduced the spatio-temporal variability of crop phenological stages in Southern Mali. Furthermore, a validated cereal crop growth model for this region, SARRA-H (System for Regional Analysis of Agro-Climatic Risks), provided precise agronomic information. Remotely-sensed green-up, maturity, senescence and dormancy MODIS dates were extracted for areas previously identified as crops and were compared with simulated leaf area indices (LAI) temporal profiles generated using the SARRA-H crop model, which considered the main cropping practices. We studied both spatial (eight sites throughout South Mali during 2007) and temporal (two sites from 2002 to 2008) differences between simulated crop cycles and determined how the differences were indicated in satellite-derived phenometrics. The spatial comparison of the phenological indicator observations and simulations showed mainly that (i) the satellite-derived start-of-season (SOS) was detected approximately 30 days before the model-derived SOS; and (ii) the satellite-derived end-of-season (EOS) was typically detected 40 days after the model-derived EOS. Studying the inter-annual difference, we verified that the mean bias was globally consistent for different climatic conditions. Therefore, the land cover dynamics derived from the MODIS time series can reproduce the spatial and temporal variability of different start-of-season and end-of-season crop species. In particular, we recommend simultaneously using start-of-season phenometrics with crop models for yield forecasting to complement commonly used climate data and provide a better estimate of vegetation phenological changes that integrate rainfall variability, land cover diversity, and the main farmer practices.
format article
topic_facet U30 - Méthodes de recherche
U10 - Informatique, mathématiques et statistiques
F01 - Culture des plantes
E90 - Structure agraire
modèle
télédétection
phénologie
analyse d'image
terre cultivée
couverture végétale
plante de culture
facteur climatique
zone agroclimatique
pratique culturale
variété
imagerie par satellite
http://aims.fao.org/aos/agrovoc/c_4881
http://aims.fao.org/aos/agrovoc/c_6498
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_36762
http://aims.fao.org/aos/agrovoc/c_16212
http://aims.fao.org/aos/agrovoc/c_25409
http://aims.fao.org/aos/agrovoc/c_1972
http://aims.fao.org/aos/agrovoc/c_29554
http://aims.fao.org/aos/agrovoc/c_28638
http://aims.fao.org/aos/agrovoc/c_2018
http://aims.fao.org/aos/agrovoc/c_8157
http://aims.fao.org/aos/agrovoc/c_36761
http://aims.fao.org/aos/agrovoc/c_4540
author Vintrou, Elodie
Bégué, Agnès
Baron, Christian
Saad, Alexandre
Lo Seen, Danny
Traoré, Seydou B.
author_facet Vintrou, Elodie
Bégué, Agnès
Baron, Christian
Saad, Alexandre
Lo Seen, Danny
Traoré, Seydou B.
author_sort Vintrou, Elodie
title A comparative study on satellite- and model-based crop phenology in West Africa
title_short A comparative study on satellite- and model-based crop phenology in West Africa
title_full A comparative study on satellite- and model-based crop phenology in West Africa
title_fullStr A comparative study on satellite- and model-based crop phenology in West Africa
title_full_unstemmed A comparative study on satellite- and model-based crop phenology in West Africa
title_sort comparative study on satellite- and model-based crop phenology in west africa
publisher MDPI
url http://agritrop.cirad.fr/573921/
http://agritrop.cirad.fr/573921/1/document_573921.pdf
work_keys_str_mv AT vintrouelodie acomparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT begueagnes acomparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT baronchristian acomparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT saadalexandre acomparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT loseendanny acomparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT traoreseydoub acomparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT vintrouelodie comparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT begueagnes comparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT baronchristian comparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT saadalexandre comparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT loseendanny comparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
AT traoreseydoub comparativestudyonsatelliteandmodelbasedcropphenologyinwestafrica
_version_ 1819042970905608192