Appropriate formulation of the objective function for the history matching of seismic attributes
The purpose of history matching is to find one or several reservoir models which can reproduce as best as possible all the available data. The available data are traditionally some production data, but today seismic data are often integrated in the history matching process. The way of measuring the misfit between real data and simulated responses has a significant impact on the optimization process and hence on the final optimal model obtained. The classical formulation of the misfit is the least square one, which was used with success for production data. This formulation was naturally extended for seismic data. However, it yields an objective function term which is difficult to reduce. Indeed, seismic data are different from production data since they are defined by millions of points and are generally very noisy. When matching seismic data, the goal is then to capture the main features. As a result, computing a point to point error is not adapted and the resulting objective function is not representative of the quality expected for the match. We propose in this paper to define a more appropriate formulation. The idea is to use some image analysis tools to define a formulation focusing on the main features of seismic images. More precisely, it is based on image segmentation and on a modified Hausdorff metric. We illustrate the success of this formulation on a simple history matching case.
Main Authors: | , , |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | U10 - Informatique, mathématiques et statistiques, P30 - Sciences et aménagement du sol, 000 - Autres thèmes, seismologie, bioinformatique, analyse d'image, modèle mathématique, http://aims.fao.org/aos/agrovoc/c_6950, http://aims.fao.org/aos/agrovoc/c_37958, http://aims.fao.org/aos/agrovoc/c_36762, http://aims.fao.org/aos/agrovoc/c_24199, |
Online Access: | http://agritrop.cirad.fr/567849/ http://agritrop.cirad.fr/567849/1/document_567849.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-567849 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5678492024-01-28T21:14:32Z http://agritrop.cirad.fr/567849/ http://agritrop.cirad.fr/567849/ Appropriate formulation of the objective function for the history matching of seismic attributes. Tillier Elodie, Da Veiga S., Derfoul R.. 2013. Computers and Geosciences, 51 : 64-73.https://doi.org/10.1016/j.cageo.2012.07.031 <https://doi.org/10.1016/j.cageo.2012.07.031> Appropriate formulation of the objective function for the history matching of seismic attributes Tillier, Elodie Da Veiga, S. Derfoul, R. eng 2013 Computers and Geosciences U10 - Informatique, mathématiques et statistiques P30 - Sciences et aménagement du sol 000 - Autres thèmes seismologie bioinformatique analyse d'image modèle mathématique http://aims.fao.org/aos/agrovoc/c_6950 http://aims.fao.org/aos/agrovoc/c_37958 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_24199 The purpose of history matching is to find one or several reservoir models which can reproduce as best as possible all the available data. The available data are traditionally some production data, but today seismic data are often integrated in the history matching process. The way of measuring the misfit between real data and simulated responses has a significant impact on the optimization process and hence on the final optimal model obtained. The classical formulation of the misfit is the least square one, which was used with success for production data. This formulation was naturally extended for seismic data. However, it yields an objective function term which is difficult to reduce. Indeed, seismic data are different from production data since they are defined by millions of points and are generally very noisy. When matching seismic data, the goal is then to capture the main features. As a result, computing a point to point error is not adapted and the resulting objective function is not representative of the quality expected for the match. We propose in this paper to define a more appropriate formulation. The idea is to use some image analysis tools to define a formulation focusing on the main features of seismic images. More precisely, it is based on image segmentation and on a modified Hausdorff metric. We illustrate the success of this formulation on a simple history matching case. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/567849/1/document_567849.pdf application/pdf Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.cageo.2012.07.031 10.1016/j.cageo.2012.07.031 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cageo.2012.07.031 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.cageo.2012.07.031 |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
U10 - Informatique, mathématiques et statistiques P30 - Sciences et aménagement du sol 000 - Autres thèmes seismologie bioinformatique analyse d'image modèle mathématique http://aims.fao.org/aos/agrovoc/c_6950 http://aims.fao.org/aos/agrovoc/c_37958 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_24199 U10 - Informatique, mathématiques et statistiques P30 - Sciences et aménagement du sol 000 - Autres thèmes seismologie bioinformatique analyse d'image modèle mathématique http://aims.fao.org/aos/agrovoc/c_6950 http://aims.fao.org/aos/agrovoc/c_37958 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_24199 |
spellingShingle |
U10 - Informatique, mathématiques et statistiques P30 - Sciences et aménagement du sol 000 - Autres thèmes seismologie bioinformatique analyse d'image modèle mathématique http://aims.fao.org/aos/agrovoc/c_6950 http://aims.fao.org/aos/agrovoc/c_37958 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_24199 U10 - Informatique, mathématiques et statistiques P30 - Sciences et aménagement du sol 000 - Autres thèmes seismologie bioinformatique analyse d'image modèle mathématique http://aims.fao.org/aos/agrovoc/c_6950 http://aims.fao.org/aos/agrovoc/c_37958 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_24199 Tillier, Elodie Da Veiga, S. Derfoul, R. Appropriate formulation of the objective function for the history matching of seismic attributes |
description |
The purpose of history matching is to find one or several reservoir models which can reproduce as best as possible all the available data. The available data are traditionally some production data, but today seismic data are often integrated in the history matching process. The way of measuring the misfit between real data and simulated responses has a significant impact on the optimization process and hence on the final optimal model obtained. The classical formulation of the misfit is the least square one, which was used with success for production data. This formulation was naturally extended for seismic data. However, it yields an objective function term which is difficult to reduce. Indeed, seismic data are different from production data since they are defined by millions of points and are generally very noisy. When matching seismic data, the goal is then to capture the main features. As a result, computing a point to point error is not adapted and the resulting objective function is not representative of the quality expected for the match. We propose in this paper to define a more appropriate formulation. The idea is to use some image analysis tools to define a formulation focusing on the main features of seismic images. More precisely, it is based on image segmentation and on a modified Hausdorff metric. We illustrate the success of this formulation on a simple history matching case. |
format |
article |
topic_facet |
U10 - Informatique, mathématiques et statistiques P30 - Sciences et aménagement du sol 000 - Autres thèmes seismologie bioinformatique analyse d'image modèle mathématique http://aims.fao.org/aos/agrovoc/c_6950 http://aims.fao.org/aos/agrovoc/c_37958 http://aims.fao.org/aos/agrovoc/c_36762 http://aims.fao.org/aos/agrovoc/c_24199 |
author |
Tillier, Elodie Da Veiga, S. Derfoul, R. |
author_facet |
Tillier, Elodie Da Veiga, S. Derfoul, R. |
author_sort |
Tillier, Elodie |
title |
Appropriate formulation of the objective function for the history matching of seismic attributes |
title_short |
Appropriate formulation of the objective function for the history matching of seismic attributes |
title_full |
Appropriate formulation of the objective function for the history matching of seismic attributes |
title_fullStr |
Appropriate formulation of the objective function for the history matching of seismic attributes |
title_full_unstemmed |
Appropriate formulation of the objective function for the history matching of seismic attributes |
title_sort |
appropriate formulation of the objective function for the history matching of seismic attributes |
url |
http://agritrop.cirad.fr/567849/ http://agritrop.cirad.fr/567849/1/document_567849.pdf |
work_keys_str_mv |
AT tillierelodie appropriateformulationoftheobjectivefunctionforthehistorymatchingofseismicattributes AT daveigas appropriateformulationoftheobjectivefunctionforthehistorymatchingofseismicattributes AT derfoulr appropriateformulationoftheobjectivefunctionforthehistorymatchingofseismicattributes |
_version_ |
1792498412426362880 |