Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios

The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil-vegetation-atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%-89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.

Saved in:
Bibliographic Details
Main Authors: Imbach, Pablo, Molina, Luis Guillermo, Locatelli, Bruno, Roupsard, Olivier, Mahé, Gil, Neilson, Ronald, Corrales, Lenin, Scholze, Marko, Ciais, Philippe
Format: article biblioteca
Language:eng
Subjects:F60 - Physiologie et biochimie végétale, U10 - Informatique, mathématiques et statistiques, B10 - Géographie, P40 - Météorologie et climatologie, P01 - Conservation de la nature et ressources foncières, changement climatique, cycle hydrologique, impact sur l'environnement, modèle de simulation, modèle mathématique, relevé (des données), relation plante sol, relation plante eau, ruissellement, surface foliaire, évapotranspiration, précipitation, température, gaz à effet de serre, végétation, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_11670, http://aims.fao.org/aos/agrovoc/c_24420, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_7536, http://aims.fao.org/aos/agrovoc/c_16146, http://aims.fao.org/aos/agrovoc/c_16147, http://aims.fao.org/aos/agrovoc/c_35388, http://aims.fao.org/aos/agrovoc/c_16110, http://aims.fao.org/aos/agrovoc/c_2741, http://aims.fao.org/aos/agrovoc/c_6161, http://aims.fao.org/aos/agrovoc/c_7657, http://aims.fao.org/aos/agrovoc/c_34841, http://aims.fao.org/aos/agrovoc/c_8176, http://aims.fao.org/aos/agrovoc/c_1434,
Online Access:http://agritrop.cirad.fr/564902/
http://agritrop.cirad.fr/564902/1/document_564902.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-564902
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic F60 - Physiologie et biochimie végétale
U10 - Informatique, mathématiques et statistiques
B10 - Géographie
P40 - Météorologie et climatologie
P01 - Conservation de la nature et ressources foncières
changement climatique
cycle hydrologique
impact sur l'environnement
modèle de simulation
modèle mathématique
relevé (des données)
relation plante sol
relation plante eau
ruissellement
surface foliaire
évapotranspiration
précipitation
température
gaz à effet de serre
végétation
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_11670
http://aims.fao.org/aos/agrovoc/c_24420
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_16146
http://aims.fao.org/aos/agrovoc/c_16147
http://aims.fao.org/aos/agrovoc/c_35388
http://aims.fao.org/aos/agrovoc/c_16110
http://aims.fao.org/aos/agrovoc/c_2741
http://aims.fao.org/aos/agrovoc/c_6161
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_34841
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_1434
F60 - Physiologie et biochimie végétale
U10 - Informatique, mathématiques et statistiques
B10 - Géographie
P40 - Météorologie et climatologie
P01 - Conservation de la nature et ressources foncières
changement climatique
cycle hydrologique
impact sur l'environnement
modèle de simulation
modèle mathématique
relevé (des données)
relation plante sol
relation plante eau
ruissellement
surface foliaire
évapotranspiration
précipitation
température
gaz à effet de serre
végétation
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_11670
http://aims.fao.org/aos/agrovoc/c_24420
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_16146
http://aims.fao.org/aos/agrovoc/c_16147
http://aims.fao.org/aos/agrovoc/c_35388
http://aims.fao.org/aos/agrovoc/c_16110
http://aims.fao.org/aos/agrovoc/c_2741
http://aims.fao.org/aos/agrovoc/c_6161
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_34841
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_1434
spellingShingle F60 - Physiologie et biochimie végétale
U10 - Informatique, mathématiques et statistiques
B10 - Géographie
P40 - Météorologie et climatologie
P01 - Conservation de la nature et ressources foncières
changement climatique
cycle hydrologique
impact sur l'environnement
modèle de simulation
modèle mathématique
relevé (des données)
relation plante sol
relation plante eau
ruissellement
surface foliaire
évapotranspiration
précipitation
température
gaz à effet de serre
végétation
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_11670
http://aims.fao.org/aos/agrovoc/c_24420
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_16146
http://aims.fao.org/aos/agrovoc/c_16147
http://aims.fao.org/aos/agrovoc/c_35388
http://aims.fao.org/aos/agrovoc/c_16110
http://aims.fao.org/aos/agrovoc/c_2741
http://aims.fao.org/aos/agrovoc/c_6161
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_34841
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_1434
F60 - Physiologie et biochimie végétale
U10 - Informatique, mathématiques et statistiques
B10 - Géographie
P40 - Météorologie et climatologie
P01 - Conservation de la nature et ressources foncières
changement climatique
cycle hydrologique
impact sur l'environnement
modèle de simulation
modèle mathématique
relevé (des données)
relation plante sol
relation plante eau
ruissellement
surface foliaire
évapotranspiration
précipitation
température
gaz à effet de serre
végétation
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_11670
http://aims.fao.org/aos/agrovoc/c_24420
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_16146
http://aims.fao.org/aos/agrovoc/c_16147
http://aims.fao.org/aos/agrovoc/c_35388
http://aims.fao.org/aos/agrovoc/c_16110
http://aims.fao.org/aos/agrovoc/c_2741
http://aims.fao.org/aos/agrovoc/c_6161
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_34841
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_1434
Imbach, Pablo
Molina, Luis Guillermo
Locatelli, Bruno
Roupsard, Olivier
Mahé, Gil
Neilson, Ronald
Corrales, Lenin
Scholze, Marko
Ciais, Philippe
Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios
description The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil-vegetation-atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%-89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty.
format article
topic_facet F60 - Physiologie et biochimie végétale
U10 - Informatique, mathématiques et statistiques
B10 - Géographie
P40 - Météorologie et climatologie
P01 - Conservation de la nature et ressources foncières
changement climatique
cycle hydrologique
impact sur l'environnement
modèle de simulation
modèle mathématique
relevé (des données)
relation plante sol
relation plante eau
ruissellement
surface foliaire
évapotranspiration
précipitation
température
gaz à effet de serre
végétation
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_11670
http://aims.fao.org/aos/agrovoc/c_24420
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_7536
http://aims.fao.org/aos/agrovoc/c_16146
http://aims.fao.org/aos/agrovoc/c_16147
http://aims.fao.org/aos/agrovoc/c_35388
http://aims.fao.org/aos/agrovoc/c_16110
http://aims.fao.org/aos/agrovoc/c_2741
http://aims.fao.org/aos/agrovoc/c_6161
http://aims.fao.org/aos/agrovoc/c_7657
http://aims.fao.org/aos/agrovoc/c_34841
http://aims.fao.org/aos/agrovoc/c_8176
http://aims.fao.org/aos/agrovoc/c_1434
author Imbach, Pablo
Molina, Luis Guillermo
Locatelli, Bruno
Roupsard, Olivier
Mahé, Gil
Neilson, Ronald
Corrales, Lenin
Scholze, Marko
Ciais, Philippe
author_facet Imbach, Pablo
Molina, Luis Guillermo
Locatelli, Bruno
Roupsard, Olivier
Mahé, Gil
Neilson, Ronald
Corrales, Lenin
Scholze, Marko
Ciais, Philippe
author_sort Imbach, Pablo
title Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios
title_short Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios
title_full Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios
title_fullStr Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios
title_full_unstemmed Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios
title_sort modeling potential equilibrium states of vegetation and terrestrial water cycle of mesoamerica under climate change scenarios
url http://agritrop.cirad.fr/564902/
http://agritrop.cirad.fr/564902/1/document_564902.pdf
work_keys_str_mv AT imbachpablo modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT molinaluisguillermo modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT locatellibruno modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT roupsardolivier modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT mahegil modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT neilsonronald modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT corraleslenin modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT scholzemarko modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
AT ciaisphilippe modelingpotentialequilibriumstatesofvegetationandterrestrialwatercycleofmesoamericaunderclimatechangescenarios
_version_ 1792498236581216256
spelling dig-cirad-fr-5649022024-01-28T20:36:26Z http://agritrop.cirad.fr/564902/ http://agritrop.cirad.fr/564902/ Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. Imbach Pablo, Molina Luis Guillermo, Locatelli Bruno, Roupsard Olivier, Mahé Gil, Neilson Ronald, Corrales Lenin, Scholze Marko, Ciais Philippe. 2012. Journal of Hydrometeorology, 13 (2) : 665-680.https://doi.org/10.1175/JHM-D-11-023.1 <https://doi.org/10.1175/JHM-D-11-023.1> Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios Imbach, Pablo Molina, Luis Guillermo Locatelli, Bruno Roupsard, Olivier Mahé, Gil Neilson, Ronald Corrales, Lenin Scholze, Marko Ciais, Philippe eng 2012 Journal of Hydrometeorology F60 - Physiologie et biochimie végétale U10 - Informatique, mathématiques et statistiques B10 - Géographie P40 - Météorologie et climatologie P01 - Conservation de la nature et ressources foncières changement climatique cycle hydrologique impact sur l'environnement modèle de simulation modèle mathématique relevé (des données) relation plante sol relation plante eau ruissellement surface foliaire évapotranspiration précipitation température gaz à effet de serre végétation http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_11670 http://aims.fao.org/aos/agrovoc/c_24420 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_7536 http://aims.fao.org/aos/agrovoc/c_16146 http://aims.fao.org/aos/agrovoc/c_16147 http://aims.fao.org/aos/agrovoc/c_35388 http://aims.fao.org/aos/agrovoc/c_16110 http://aims.fao.org/aos/agrovoc/c_2741 http://aims.fao.org/aos/agrovoc/c_6161 http://aims.fao.org/aos/agrovoc/c_7657 http://aims.fao.org/aos/agrovoc/c_34841 http://aims.fao.org/aos/agrovoc/c_8176 Amérique centrale http://aims.fao.org/aos/agrovoc/c_1434 The likelihood and magnitude of the impacts of climate change on potential vegetation and the water cycle in Mesoamerica is evaluated. Mesoamerica is a global biodiversity hotspot with highly diverse topographic and climatic conditions and is among the tropical regions with the highest expected changes in precipitation and temperature under future climate scenarios. The biogeographic soil-vegetation-atmosphere model Mapped Atmosphere Plant Soil System (MAPSS) was used for simulating the integrated changes in leaf area index (LAI), vegetation types (grass, shrubs, and trees), evapotranspiration, and runoff at the end of the twenty-first century. Uncertainty was estimated as the likelihood of changes in vegetation and water cycle under three ensembles of model runs, one for each of the groups of greenhouse gas emission scenarios (low, intermediate, and high emissions), for a total of 136 runs generated with 23 general circulation models (GCMs). LAI is likely to decrease over 77%-89% of the region, depending on climate scenario groups, showing that potential vegetation will likely shift from humid to dry types. Accounting for potential effects of CO2 on water use efficiency significantly decreased impacts on LAI. Runoff will decrease across the region even in areas where precipitation increases (even under increased water use efficiency), as temperature change will increase evapotranspiration. Higher emission scenarios show lower uncertainty (higher likelihood) in modeled impacts. Although the projection spread is high for future precipitation, the impacts of climate change on vegetation and water cycle are predicted with relatively low uncertainty. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/564902/1/document_564902.pdf application/pdf Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1175/JHM-D-11-023.1 10.1175/JHM-D-11-023.1 http://catalogue-bibliotheques.cirad.fr/cgi-bin/koha/opac-detail.pl?biblionumber=13156 info:eu-repo/semantics/altIdentifier/doi/10.1175/JHM-D-11-023.1 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1175/JHM-D-11-023.1