Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis)

Drought has dramatic negative effects on plants¿ growth and crop productivity. Although some of the responses and underlying mechanisms are still poorly understood, there is increasing evidence that drought may have a negative effect on photosynthetic capacity. Biochemical models of leaf photosynthesis coupled with models of radiation transfer have been widely used in ecophysiological studies, and, more recently, in global change modeling. They are based on two fundamental relationships at the scale of the leaf: (i) nitrogen content-light exposure and (ii) photosynthetic capacity nitrogen content. Although drought is expected to increase in many places across the world, such models are not adapted to drought conditions. More specifically, the effects of drought on the two fundamental relationships are not well documented. The objective of our study was to investigate the effects of a long-term drought imposed slowly on the nitrogen content and photosynthetic capacity of leaves similarly exposed to light, from 3-year-old lychee trees cv. Kwaï Mi. Leaf nitrogen and non-structural carbohydrate concentrations were measured along with gas exchanges and the light-saturated rate of photosynthetic electron transport (Jmax) after a 5.5-month-long period of drought. Leaf nitrogen content on a mass basis remained stable, while the leaf mass-to-area ratio (LMA) increased with increasing water stress. Consequently, the leaf nitrogen content on an area basis (Na) increased in a non-linear fashion. The starch content decreased, while the soluble sugar content increased. Stomata closed and net assimilation decreased to zero, while Jmax and the ratio Jmax/Na decreased with increasing water stress. The drought-associated decrease in photosynthetic capacity can be attributed to downregulation of photosynthetic electron transport and to reallocation of leaf nitrogen content. It is concluded that modeling photosynthesis in drought conditions will require, first, the modeling of the effect of drought on LMA and Jmax.

Saved in:
Bibliographic Details
Main Authors: Damour, Gaëlle, Vandame, Marc, Urban, Laurent
Format: article biblioteca
Language:eng
Subjects:F62 - Physiologie végétale - Croissance et développement, H50 - Troubles divers des plantes, Litchi chinensis, photosynthèse, sécheresse, adaptation, teneur en azote, teneur en glucides, feuille, http://aims.fao.org/aos/agrovoc/c_4384, http://aims.fao.org/aos/agrovoc/c_5812, http://aims.fao.org/aos/agrovoc/c_2391, http://aims.fao.org/aos/agrovoc/c_117, http://aims.fao.org/aos/agrovoc/c_5193, http://aims.fao.org/aos/agrovoc/c_1298, http://aims.fao.org/aos/agrovoc/c_4243, http://aims.fao.org/aos/agrovoc/c_6543, http://aims.fao.org/aos/agrovoc/c_3081,
Online Access:http://agritrop.cirad.fr/545677/
http://agritrop.cirad.fr/545677/1/document_545677.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!