Monte Carlo observer for a stochastic model of bioreactors
This paper proposes a (stochastic) Langevin-type formulation to modelize the continuous time evolution of the state of a biological reactor. We adapt the classical technique of asymptotic observer commonly used in the deterministic case, to design a Monte-Carlo procedure for the estimation of an unobserved reactant. We illustrate the relevance of this approach by numerical simulations.
Saved in:
Main Authors: | Joannides, Marc, Larramendy-Valverde, Irène, Rossi, Vivien |
---|---|
Format: | conference_item biblioteca |
Language: | eng |
Published: |
World Scientific Publishing [SG]
|
Subjects: | U10 - Informatique, mathématiques et statistiques, |
Online Access: | http://agritrop.cirad.fr/545345/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Convolution particle filter for parameter estimation in general state-space models
by: Campillo, Fabien, et al. -
Estimating sharka dispersal function by stochastic spatiotemporal modelling
by: Lefort, Mathilde, et al. -
A methodology for eliciting and modelling stakeholders' representations with agent based modelling
by: Becu, Nicolas, et al. -
Outils d'observation et d'analyse de simulations multi-agents : l'expérience de la plate-forme Geamas/Biomas
by: Payet, Denis, et al. -
Cellular automata individual-based modeling
by: Le Page, Christophe