Estimating hidden semi-markov chains from discrete sequences

This article addresses the estimation of hidden semi-Markov chains from non stationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov s chain is composed of a non observable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.

Saved in:
Bibliographic Details
Main Author: Guédon, Yann
Format: article biblioteca
Language:eng
Subjects:U10 - Informatique, mathématiques et statistiques, F50 - Anatomie et morphologie des plantes, F62 - Physiologie végétale - Croissance et développement, modèle mathématique, modèle de simulation, ramification, floraison, modèle végétal, Prunus armeniaca, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_1057, http://aims.fao.org/aos/agrovoc/c_2992, http://aims.fao.org/aos/agrovoc/c_36583, http://aims.fao.org/aos/agrovoc/c_6280,
Online Access:http://agritrop.cirad.fr/529866/
http://agritrop.cirad.fr/529866/1/529866.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-529866
record_format koha
spelling dig-cirad-fr-5298662024-01-28T14:08:45Z http://agritrop.cirad.fr/529866/ http://agritrop.cirad.fr/529866/ Estimating hidden semi-markov chains from discrete sequences. Guédon Yann. 2003. Journal of Computational and Graphical Statistics, 12 (3) : 604-639.https://doi.org/10.1198/1061860032030 <https://doi.org/10.1198/1061860032030> Estimating hidden semi-markov chains from discrete sequences Guédon, Yann eng 2003 Journal of Computational and Graphical Statistics U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 This article addresses the estimation of hidden semi-Markov chains from non stationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov s chain is composed of a non observable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/529866/1/529866.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1198/1061860032030 10.1198/1061860032030 http://catalogue-bibliotheques.cirad.fr/cgi-bin/koha/opac-detail.pl?biblionumber=189398 info:eu-repo/semantics/altIdentifier/doi/10.1198/1061860032030 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1198/1061860032030
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
ramification
floraison
modèle végétal
Prunus armeniaca
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
http://aims.fao.org/aos/agrovoc/c_6280
U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
ramification
floraison
modèle végétal
Prunus armeniaca
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
http://aims.fao.org/aos/agrovoc/c_6280
spellingShingle U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
ramification
floraison
modèle végétal
Prunus armeniaca
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
http://aims.fao.org/aos/agrovoc/c_6280
U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
ramification
floraison
modèle végétal
Prunus armeniaca
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
http://aims.fao.org/aos/agrovoc/c_6280
Guédon, Yann
Estimating hidden semi-markov chains from discrete sequences
description This article addresses the estimation of hidden semi-Markov chains from non stationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov s chain is composed of a non observable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
format article
topic_facet U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
ramification
floraison
modèle végétal
Prunus armeniaca
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
http://aims.fao.org/aos/agrovoc/c_6280
author Guédon, Yann
author_facet Guédon, Yann
author_sort Guédon, Yann
title Estimating hidden semi-markov chains from discrete sequences
title_short Estimating hidden semi-markov chains from discrete sequences
title_full Estimating hidden semi-markov chains from discrete sequences
title_fullStr Estimating hidden semi-markov chains from discrete sequences
title_full_unstemmed Estimating hidden semi-markov chains from discrete sequences
title_sort estimating hidden semi-markov chains from discrete sequences
url http://agritrop.cirad.fr/529866/
http://agritrop.cirad.fr/529866/1/529866.pdf
work_keys_str_mv AT guedonyann estimatinghiddensemimarkovchainsfromdiscretesequences
_version_ 1792496343212621824