Estimating hidden semi-markov chains from discrete sequences
This article addresses the estimation of hidden semi-Markov chains from non stationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov s chain is composed of a non observable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
Main Author: | |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | U10 - Informatique, mathématiques et statistiques, F50 - Anatomie et morphologie des plantes, F62 - Physiologie végétale - Croissance et développement, modèle mathématique, modèle de simulation, ramification, floraison, modèle végétal, Prunus armeniaca, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_1057, http://aims.fao.org/aos/agrovoc/c_2992, http://aims.fao.org/aos/agrovoc/c_36583, http://aims.fao.org/aos/agrovoc/c_6280, |
Online Access: | http://agritrop.cirad.fr/529866/ http://agritrop.cirad.fr/529866/1/529866.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-529866 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5298662024-01-28T14:08:45Z http://agritrop.cirad.fr/529866/ http://agritrop.cirad.fr/529866/ Estimating hidden semi-markov chains from discrete sequences. Guédon Yann. 2003. Journal of Computational and Graphical Statistics, 12 (3) : 604-639.https://doi.org/10.1198/1061860032030 <https://doi.org/10.1198/1061860032030> Estimating hidden semi-markov chains from discrete sequences Guédon, Yann eng 2003 Journal of Computational and Graphical Statistics U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 This article addresses the estimation of hidden semi-Markov chains from non stationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov s chain is composed of a non observable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/529866/1/529866.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1198/1061860032030 10.1198/1061860032030 http://catalogue-bibliotheques.cirad.fr/cgi-bin/koha/opac-detail.pl?biblionumber=189398 info:eu-repo/semantics/altIdentifier/doi/10.1198/1061860032030 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1198/1061860032030 |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 |
spellingShingle |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 Guédon, Yann Estimating hidden semi-markov chains from discrete sequences |
description |
This article addresses the estimation of hidden semi-Markov chains from non stationary discrete sequences. Hidden semi-Markov chains are particularly useful to model the succession of homogeneous zones or segments along sequences. A discrete hidden semi-Markov s chain is composed of a non observable state process, which is a semi-Markov chain, and a discrete output process. Hidden semi-Markov chains generalize hidden Markov chains and enable the modeling of various durational structures. From an algorithmic point of view, a new forward-backward algorithm is proposed whose complexity is similar to that of the Viterbi algorithm in terms of sequence length (quadratic in the worst case in time and linear in space). This opens the way to the maximum likelihood estimation of hidden semi-Markov chains from long sequences. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants. |
format |
article |
topic_facet |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation ramification floraison modèle végétal Prunus armeniaca http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 http://aims.fao.org/aos/agrovoc/c_6280 |
author |
Guédon, Yann |
author_facet |
Guédon, Yann |
author_sort |
Guédon, Yann |
title |
Estimating hidden semi-markov chains from discrete sequences |
title_short |
Estimating hidden semi-markov chains from discrete sequences |
title_full |
Estimating hidden semi-markov chains from discrete sequences |
title_fullStr |
Estimating hidden semi-markov chains from discrete sequences |
title_full_unstemmed |
Estimating hidden semi-markov chains from discrete sequences |
title_sort |
estimating hidden semi-markov chains from discrete sequences |
url |
http://agritrop.cirad.fr/529866/ http://agritrop.cirad.fr/529866/1/529866.pdf |
work_keys_str_mv |
AT guedonyann estimatinghiddensemimarkovchainsfromdiscretesequences |
_version_ |
1792496343212621824 |