Hidden hybrid markov/semi-markov chains

Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.

Saved in:
Bibliographic Details
Main Author: Guédon, Yann
Format: article biblioteca
Language:eng
Subjects:U10 - Informatique, mathématiques et statistiques, F50 - Anatomie et morphologie des plantes, F62 - Physiologie végétale - Croissance et développement, modèle mathématique, modèle de simulation, anatomie végétale, Prunus armeniaca, ramification, floraison, modèle végétal, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_5954, http://aims.fao.org/aos/agrovoc/c_6280, http://aims.fao.org/aos/agrovoc/c_1057, http://aims.fao.org/aos/agrovoc/c_2992, http://aims.fao.org/aos/agrovoc/c_36583,
Online Access:http://agritrop.cirad.fr/526482/
http://agritrop.cirad.fr/526482/1/document_526482.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-526482
record_format koha
spelling dig-cirad-fr-5264822024-01-28T13:36:21Z http://agritrop.cirad.fr/526482/ http://agritrop.cirad.fr/526482/ Hidden hybrid markov/semi-markov chains. Guédon Yann. 2005. Computational Statistics and Data Analysis, 49 (3) : 663-688.https://doi.org/10.1016/j.csda.2004.05.033 <https://doi.org/10.1016/j.csda.2004.05.033> Hidden hybrid markov/semi-markov chains Guédon, Yann eng 2005 Computational Statistics and Data Analysis U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/526482/1/document_526482.pdf application/pdf Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.csda.2004.05.033 10.1016/j.csda.2004.05.033 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2004.05.033 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.csda.2004.05.033
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
anatomie végétale
Prunus armeniaca
ramification
floraison
modèle végétal
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_6280
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
anatomie végétale
Prunus armeniaca
ramification
floraison
modèle végétal
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_6280
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
spellingShingle U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
anatomie végétale
Prunus armeniaca
ramification
floraison
modèle végétal
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_6280
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
anatomie végétale
Prunus armeniaca
ramification
floraison
modèle végétal
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_6280
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
Guédon, Yann
Hidden hybrid markov/semi-markov chains
description Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
format article
topic_facet U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
F62 - Physiologie végétale - Croissance et développement
modèle mathématique
modèle de simulation
anatomie végétale
Prunus armeniaca
ramification
floraison
modèle végétal
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_6280
http://aims.fao.org/aos/agrovoc/c_1057
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_36583
author Guédon, Yann
author_facet Guédon, Yann
author_sort Guédon, Yann
title Hidden hybrid markov/semi-markov chains
title_short Hidden hybrid markov/semi-markov chains
title_full Hidden hybrid markov/semi-markov chains
title_fullStr Hidden hybrid markov/semi-markov chains
title_full_unstemmed Hidden hybrid markov/semi-markov chains
title_sort hidden hybrid markov/semi-markov chains
url http://agritrop.cirad.fr/526482/
http://agritrop.cirad.fr/526482/1/document_526482.pdf
work_keys_str_mv AT guedonyann hiddenhybridmarkovsemimarkovchains
_version_ 1792496185227870208