Hidden hybrid markov/semi-markov chains
Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
Main Author: | |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | U10 - Informatique, mathématiques et statistiques, F50 - Anatomie et morphologie des plantes, F62 - Physiologie végétale - Croissance et développement, modèle mathématique, modèle de simulation, anatomie végétale, Prunus armeniaca, ramification, floraison, modèle végétal, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_5954, http://aims.fao.org/aos/agrovoc/c_6280, http://aims.fao.org/aos/agrovoc/c_1057, http://aims.fao.org/aos/agrovoc/c_2992, http://aims.fao.org/aos/agrovoc/c_36583, |
Online Access: | http://agritrop.cirad.fr/526482/ http://agritrop.cirad.fr/526482/1/document_526482.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-526482 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-5264822024-01-28T13:36:21Z http://agritrop.cirad.fr/526482/ http://agritrop.cirad.fr/526482/ Hidden hybrid markov/semi-markov chains. Guédon Yann. 2005. Computational Statistics and Data Analysis, 49 (3) : 663-688.https://doi.org/10.1016/j.csda.2004.05.033 <https://doi.org/10.1016/j.csda.2004.05.033> Hidden hybrid markov/semi-markov chains Guédon, Yann eng 2005 Computational Statistics and Data Analysis U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/526482/1/document_526482.pdf application/pdf Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1016/j.csda.2004.05.033 10.1016/j.csda.2004.05.033 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2004.05.033 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1016/j.csda.2004.05.033 |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 |
spellingShingle |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 Guédon, Yann Hidden hybrid markov/semi-markov chains |
description |
Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants. |
format |
article |
topic_facet |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes F62 - Physiologie végétale - Croissance et développement modèle mathématique modèle de simulation anatomie végétale Prunus armeniaca ramification floraison modèle végétal http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_6280 http://aims.fao.org/aos/agrovoc/c_1057 http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_36583 |
author |
Guédon, Yann |
author_facet |
Guédon, Yann |
author_sort |
Guédon, Yann |
title |
Hidden hybrid markov/semi-markov chains |
title_short |
Hidden hybrid markov/semi-markov chains |
title_full |
Hidden hybrid markov/semi-markov chains |
title_fullStr |
Hidden hybrid markov/semi-markov chains |
title_full_unstemmed |
Hidden hybrid markov/semi-markov chains |
title_sort |
hidden hybrid markov/semi-markov chains |
url |
http://agritrop.cirad.fr/526482/ http://agritrop.cirad.fr/526482/1/document_526482.pdf |
work_keys_str_mv |
AT guedonyann hiddenhybridmarkovsemimarkovchains |
_version_ |
1792496185227870208 |