A dynamic, architectural plant model simulating resource-dependent growth

- Background and Aims Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering. - Model GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual-scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration efficiency to be constant and atmospheric demand to be the driving force, under non-limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other 'hidden' plant parameters are calibrated using the non-linear, least-square method. - Key Results and Conclusions The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model's underlying concepts to predict the plant's phenotypic plasticity is discussed.

Saved in:
Bibliographic Details
Main Authors: Yan, Hong-Ping, Kang, Meng Zhen, De Reffye, Philippe, Dingkuhn, Michaël
Format: article biblioteca
Language:eng
Subjects:U10 - Informatique, mathématiques et statistiques, F62 - Physiologie végétale - Croissance et développement, F50 - Anatomie et morphologie des plantes, modèle mathématique, modèle de simulation, croissance, anatomie végétale, port de la plante, développement biologique, arbre, biomasse, phénotype, organogénèse, imagerie, application des ordinateurs, modélisation, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_24242, http://aims.fao.org/aos/agrovoc/c_3394, http://aims.fao.org/aos/agrovoc/c_5954, http://aims.fao.org/aos/agrovoc/c_5969, http://aims.fao.org/aos/agrovoc/c_921, http://aims.fao.org/aos/agrovoc/c_7887, http://aims.fao.org/aos/agrovoc/c_926, http://aims.fao.org/aos/agrovoc/c_5776, http://aims.fao.org/aos/agrovoc/c_27791, http://aims.fao.org/aos/agrovoc/c_36760, http://aims.fao.org/aos/agrovoc/c_24009, http://aims.fao.org/aos/agrovoc/c_230ab86c,
Online Access:http://agritrop.cirad.fr/520493/
http://agritrop.cirad.fr/520493/1/520493.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-520493
record_format koha
spelling dig-cirad-fr-5204932024-01-28T12:33:38Z http://agritrop.cirad.fr/520493/ http://agritrop.cirad.fr/520493/ A dynamic, architectural plant model simulating resource-dependent growth. Yan Hong-Ping, Kang Meng Zhen, De Reffye Philippe, Dingkuhn Michaël. 2004. Annals of Botany, 93 : 591-602.https://doi.org/10.1093/aob/mch078 <https://doi.org/10.1093/aob/mch078> A dynamic, architectural plant model simulating resource-dependent growth Yan, Hong-Ping Kang, Meng Zhen De Reffye, Philippe Dingkuhn, Michaël eng 2004 Annals of Botany U10 - Informatique, mathématiques et statistiques F62 - Physiologie végétale - Croissance et développement F50 - Anatomie et morphologie des plantes modèle mathématique modèle de simulation croissance anatomie végétale port de la plante développement biologique arbre biomasse phénotype organogénèse imagerie application des ordinateurs modélisation http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_24242 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_5954 http://aims.fao.org/aos/agrovoc/c_5969 http://aims.fao.org/aos/agrovoc/c_921 http://aims.fao.org/aos/agrovoc/c_7887 http://aims.fao.org/aos/agrovoc/c_926 http://aims.fao.org/aos/agrovoc/c_5776 http://aims.fao.org/aos/agrovoc/c_27791 http://aims.fao.org/aos/agrovoc/c_36760 http://aims.fao.org/aos/agrovoc/c_24009 http://aims.fao.org/aos/agrovoc/c_230ab86c - Background and Aims Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering. - Model GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual-scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration efficiency to be constant and atmospheric demand to be the driving force, under non-limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other 'hidden' plant parameters are calibrated using the non-linear, least-square method. - Key Results and Conclusions The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model's underlying concepts to predict the plant's phenotypic plasticity is discussed. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/520493/1/520493.pdf text Cirad license info:eu-repo/semantics/restrictedAccess https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1093/aob/mch078 10.1093/aob/mch078 http://catalogue-bibliotheques.cirad.fr/cgi-bin/koha/opac-detail.pl?biblionumber=181874 info:eu-repo/semantics/altIdentifier/doi/10.1093/aob/mch078 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1093/aob/mch078
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U10 - Informatique, mathématiques et statistiques
F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes
modèle mathématique
modèle de simulation
croissance
anatomie végétale
port de la plante
développement biologique
arbre
biomasse
phénotype
organogénèse
imagerie
application des ordinateurs
modélisation
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_5969
http://aims.fao.org/aos/agrovoc/c_921
http://aims.fao.org/aos/agrovoc/c_7887
http://aims.fao.org/aos/agrovoc/c_926
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_27791
http://aims.fao.org/aos/agrovoc/c_36760
http://aims.fao.org/aos/agrovoc/c_24009
http://aims.fao.org/aos/agrovoc/c_230ab86c
U10 - Informatique, mathématiques et statistiques
F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes
modèle mathématique
modèle de simulation
croissance
anatomie végétale
port de la plante
développement biologique
arbre
biomasse
phénotype
organogénèse
imagerie
application des ordinateurs
modélisation
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_5969
http://aims.fao.org/aos/agrovoc/c_921
http://aims.fao.org/aos/agrovoc/c_7887
http://aims.fao.org/aos/agrovoc/c_926
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_27791
http://aims.fao.org/aos/agrovoc/c_36760
http://aims.fao.org/aos/agrovoc/c_24009
http://aims.fao.org/aos/agrovoc/c_230ab86c
spellingShingle U10 - Informatique, mathématiques et statistiques
F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes
modèle mathématique
modèle de simulation
croissance
anatomie végétale
port de la plante
développement biologique
arbre
biomasse
phénotype
organogénèse
imagerie
application des ordinateurs
modélisation
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_5969
http://aims.fao.org/aos/agrovoc/c_921
http://aims.fao.org/aos/agrovoc/c_7887
http://aims.fao.org/aos/agrovoc/c_926
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_27791
http://aims.fao.org/aos/agrovoc/c_36760
http://aims.fao.org/aos/agrovoc/c_24009
http://aims.fao.org/aos/agrovoc/c_230ab86c
U10 - Informatique, mathématiques et statistiques
F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes
modèle mathématique
modèle de simulation
croissance
anatomie végétale
port de la plante
développement biologique
arbre
biomasse
phénotype
organogénèse
imagerie
application des ordinateurs
modélisation
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_5969
http://aims.fao.org/aos/agrovoc/c_921
http://aims.fao.org/aos/agrovoc/c_7887
http://aims.fao.org/aos/agrovoc/c_926
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_27791
http://aims.fao.org/aos/agrovoc/c_36760
http://aims.fao.org/aos/agrovoc/c_24009
http://aims.fao.org/aos/agrovoc/c_230ab86c
Yan, Hong-Ping
Kang, Meng Zhen
De Reffye, Philippe
Dingkuhn, Michaël
A dynamic, architectural plant model simulating resource-dependent growth
description - Background and Aims Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering. - Model GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual-scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration efficiency to be constant and atmospheric demand to be the driving force, under non-limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other 'hidden' plant parameters are calibrated using the non-linear, least-square method. - Key Results and Conclusions The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model's underlying concepts to predict the plant's phenotypic plasticity is discussed.
format article
topic_facet U10 - Informatique, mathématiques et statistiques
F62 - Physiologie végétale - Croissance et développement
F50 - Anatomie et morphologie des plantes
modèle mathématique
modèle de simulation
croissance
anatomie végétale
port de la plante
développement biologique
arbre
biomasse
phénotype
organogénèse
imagerie
application des ordinateurs
modélisation
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_24242
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_5954
http://aims.fao.org/aos/agrovoc/c_5969
http://aims.fao.org/aos/agrovoc/c_921
http://aims.fao.org/aos/agrovoc/c_7887
http://aims.fao.org/aos/agrovoc/c_926
http://aims.fao.org/aos/agrovoc/c_5776
http://aims.fao.org/aos/agrovoc/c_27791
http://aims.fao.org/aos/agrovoc/c_36760
http://aims.fao.org/aos/agrovoc/c_24009
http://aims.fao.org/aos/agrovoc/c_230ab86c
author Yan, Hong-Ping
Kang, Meng Zhen
De Reffye, Philippe
Dingkuhn, Michaël
author_facet Yan, Hong-Ping
Kang, Meng Zhen
De Reffye, Philippe
Dingkuhn, Michaël
author_sort Yan, Hong-Ping
title A dynamic, architectural plant model simulating resource-dependent growth
title_short A dynamic, architectural plant model simulating resource-dependent growth
title_full A dynamic, architectural plant model simulating resource-dependent growth
title_fullStr A dynamic, architectural plant model simulating resource-dependent growth
title_full_unstemmed A dynamic, architectural plant model simulating resource-dependent growth
title_sort dynamic, architectural plant model simulating resource-dependent growth
url http://agritrop.cirad.fr/520493/
http://agritrop.cirad.fr/520493/1/520493.pdf
work_keys_str_mv AT yanhongping adynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT kangmengzhen adynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT dereffyephilippe adynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT dingkuhnmichael adynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT yanhongping dynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT kangmengzhen dynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT dereffyephilippe dynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
AT dingkuhnmichael dynamicarchitecturalplantmodelsimulatingresourcedependentgrowth
_version_ 1792495877770706944