Computational methods for discrete hidden semi-markov chains

We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences.

Saved in:
Bibliographic Details
Main Author: Guédon, Yann
Format: article biblioteca
Language:eng
Subjects:U10 - Informatique, mathématiques et statistiques, F50 - Anatomie et morphologie des plantes, méthode statistique, modèle mathématique, plante, croissance, modélisation, http://aims.fao.org/aos/agrovoc/c_7377, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_5993, http://aims.fao.org/aos/agrovoc/c_3394, http://aims.fao.org/aos/agrovoc/c_230ab86c,
Online Access:http://agritrop.cirad.fr/392186/
http://agritrop.cirad.fr/392186/1/ID392186.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-392186
record_format koha
spelling dig-cirad-fr-3921862024-01-27T23:59:58Z http://agritrop.cirad.fr/392186/ http://agritrop.cirad.fr/392186/ Computational methods for discrete hidden semi-markov chains. Guédon Yann. 1999. Applied Stochastic Models in Business and Industry, 15 (3) : 195-224.https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F <https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F> Computational methods for discrete hidden semi-markov chains Guédon, Yann eng 1999 Applied Stochastic Models in Business and Industry U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/392186/1/ID392186.pdf text Cirad license info:eu-repo/semantics/embargoedAccess info:eu-repo/date/embargoEnd/2999-12-31 https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F 10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F info:eu-repo/semantics/altIdentifier/doi/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
méthode statistique
modèle mathématique
plante
croissance
modélisation
http://aims.fao.org/aos/agrovoc/c_7377
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_5993
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_230ab86c
U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
méthode statistique
modèle mathématique
plante
croissance
modélisation
http://aims.fao.org/aos/agrovoc/c_7377
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_5993
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_230ab86c
spellingShingle U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
méthode statistique
modèle mathématique
plante
croissance
modélisation
http://aims.fao.org/aos/agrovoc/c_7377
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_5993
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_230ab86c
U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
méthode statistique
modèle mathématique
plante
croissance
modélisation
http://aims.fao.org/aos/agrovoc/c_7377
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_5993
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_230ab86c
Guédon, Yann
Computational methods for discrete hidden semi-markov chains
description We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences.
format article
topic_facet U10 - Informatique, mathématiques et statistiques
F50 - Anatomie et morphologie des plantes
méthode statistique
modèle mathématique
plante
croissance
modélisation
http://aims.fao.org/aos/agrovoc/c_7377
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_5993
http://aims.fao.org/aos/agrovoc/c_3394
http://aims.fao.org/aos/agrovoc/c_230ab86c
author Guédon, Yann
author_facet Guédon, Yann
author_sort Guédon, Yann
title Computational methods for discrete hidden semi-markov chains
title_short Computational methods for discrete hidden semi-markov chains
title_full Computational methods for discrete hidden semi-markov chains
title_fullStr Computational methods for discrete hidden semi-markov chains
title_full_unstemmed Computational methods for discrete hidden semi-markov chains
title_sort computational methods for discrete hidden semi-markov chains
url http://agritrop.cirad.fr/392186/
http://agritrop.cirad.fr/392186/1/ID392186.pdf
work_keys_str_mv AT guedonyann computationalmethodsfordiscretehiddensemimarkovchains
_version_ 1792491577181995008