Computational methods for discrete hidden semi-markov chains
We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences.
Main Author: | |
---|---|
Format: | article biblioteca |
Language: | eng |
Subjects: | U10 - Informatique, mathématiques et statistiques, F50 - Anatomie et morphologie des plantes, méthode statistique, modèle mathématique, plante, croissance, modélisation, http://aims.fao.org/aos/agrovoc/c_7377, http://aims.fao.org/aos/agrovoc/c_24199, http://aims.fao.org/aos/agrovoc/c_5993, http://aims.fao.org/aos/agrovoc/c_3394, http://aims.fao.org/aos/agrovoc/c_230ab86c, |
Online Access: | http://agritrop.cirad.fr/392186/ http://agritrop.cirad.fr/392186/1/ID392186.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cirad-fr-392186 |
---|---|
record_format |
koha |
spelling |
dig-cirad-fr-3921862024-01-27T23:59:58Z http://agritrop.cirad.fr/392186/ http://agritrop.cirad.fr/392186/ Computational methods for discrete hidden semi-markov chains. Guédon Yann. 1999. Applied Stochastic Models in Business and Industry, 15 (3) : 195-224.https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F <https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F> Computational methods for discrete hidden semi-markov chains Guédon, Yann eng 1999 Applied Stochastic Models in Business and Industry U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/392186/1/ID392186.pdf text Cirad license info:eu-repo/semantics/embargoedAccess info:eu-repo/date/embargoEnd/2999-12-31 https://agritrop.cirad.fr/mention_legale.html https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F 10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F info:eu-repo/semantics/altIdentifier/doi/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F |
institution |
CIRAD FR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cirad-fr |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CIRAD Francia |
language |
eng |
topic |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c |
spellingShingle |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c Guédon, Yann Computational methods for discrete hidden semi-markov chains |
description |
We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences. |
format |
article |
topic_facet |
U10 - Informatique, mathématiques et statistiques F50 - Anatomie et morphologie des plantes méthode statistique modèle mathématique plante croissance modélisation http://aims.fao.org/aos/agrovoc/c_7377 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_5993 http://aims.fao.org/aos/agrovoc/c_3394 http://aims.fao.org/aos/agrovoc/c_230ab86c |
author |
Guédon, Yann |
author_facet |
Guédon, Yann |
author_sort |
Guédon, Yann |
title |
Computational methods for discrete hidden semi-markov chains |
title_short |
Computational methods for discrete hidden semi-markov chains |
title_full |
Computational methods for discrete hidden semi-markov chains |
title_fullStr |
Computational methods for discrete hidden semi-markov chains |
title_full_unstemmed |
Computational methods for discrete hidden semi-markov chains |
title_sort |
computational methods for discrete hidden semi-markov chains |
url |
http://agritrop.cirad.fr/392186/ http://agritrop.cirad.fr/392186/1/ID392186.pdf |
work_keys_str_mv |
AT guedonyann computationalmethodsfordiscretehiddensemimarkovchains |
_version_ |
1792491577181995008 |