Assessing the potential of extra-early maturing landraces for improving tolerance to drought, heat, and both combined stresses in maize

Maize landrace accessions constitute an invaluable gene pool of unexplored alleles that can be harnessed to mitigate the challenges of the narrowing genetic base, declined genetic gains, and reduced resilience to abiotic stress in modern varieties developed from repeated recycling of few superior breeding lines. The objective of this study was to identify extra-early maize landraces that express tolerance to drought and/or heat stress and maintain high grain yield (GY) with other desirable agronomic/morpho-physiological traits. Field experiments were carried out over two years on 66 extra-early maturing maize landraces and six drought and/or heat-tolerant populations under drought stress (DS), heat stress (HS), combined both stresses (DSHS), and non-stress (NS) conditions as a control. Wide variations were observed across the accessions for measured traits under each stress, demonstrating the existence of substantial natural variation for tolerance to the abiotic stresses in the maize accessions. Performance under DS was predictive of yield potential under DSHS, but tolerance to HS was independent of tolerance to DS and DSHS. The accessions displayed greater tolerance to HS (23% yield loss) relative to DS (49% yield loss) and DSHS (yield loss = 58%). Accessions TZm-1162, TZm-1167, TZm-1472, and TZm-1508 showed particularly good adaptation to the three stresses. These landrace accessions should be further explored to identify the genes underlying their high tolerance and they could be exploited in maize breeding as a resource for broadening the genetic base and increasing the abiotic stress resilience of elite maize varieties.

Saved in:
Bibliographic Details
Main Authors: Nelimor, C., Badu-Apraku, Baffour, Tetteh, A.Y., Garcia-Oliveira, A.L., N’guetta, A.S.P.
Format: Journal Article biblioteca
Language:English
Published: MDPI 2020
Subjects:abiotic stress, climate change, drought stress, stress, drought, genetic resources, maize, land races,
Online Access:https://hdl.handle.net/10568/108837
https://doi.org/10.3390/agronomy10030318
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maize landrace accessions constitute an invaluable gene pool of unexplored alleles that can be harnessed to mitigate the challenges of the narrowing genetic base, declined genetic gains, and reduced resilience to abiotic stress in modern varieties developed from repeated recycling of few superior breeding lines. The objective of this study was to identify extra-early maize landraces that express tolerance to drought and/or heat stress and maintain high grain yield (GY) with other desirable agronomic/morpho-physiological traits. Field experiments were carried out over two years on 66 extra-early maturing maize landraces and six drought and/or heat-tolerant populations under drought stress (DS), heat stress (HS), combined both stresses (DSHS), and non-stress (NS) conditions as a control. Wide variations were observed across the accessions for measured traits under each stress, demonstrating the existence of substantial natural variation for tolerance to the abiotic stresses in the maize accessions. Performance under DS was predictive of yield potential under DSHS, but tolerance to HS was independent of tolerance to DS and DSHS. The accessions displayed greater tolerance to HS (23% yield loss) relative to DS (49% yield loss) and DSHS (yield loss = 58%). Accessions TZm-1162, TZm-1167, TZm-1472, and TZm-1508 showed particularly good adaptation to the three stresses. These landrace accessions should be further explored to identify the genes underlying their high tolerance and they could be exploited in maize breeding as a resource for broadening the genetic base and increasing the abiotic stress resilience of elite maize varieties.