The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops

The agricultural sector continues to be the largest consumer of useful water. Despite knowing the volume of water required by plants (evapotranspiration), methodologies must be adapted to current production systems. Based on the energy balance (radiation), it is feasible to establish models to estimate evapotranspiration depending on the production system: extensive crops, closed, and interior systems. The objective of this work was to present related research to measure and model the evapotranspiration of crops under current production techniques, based on the energy balance. The original FAO Penman–Monteith model is considered to be the model that best describes the evapotranspiration process, and with advances in instrumentation, there are sensors capable of measuring each of the variables it contains. From this model, procedures have been approximated for its use in extensive crops through remote sensing to calculate evapotranspiration, which jointly integrates the climatic variables and the type and age of the crop, with which real evapotranspiration is obtained. The same Penman–Monteith model has been adapted for use in greenhouse crops, where given the reduced root space and being in a closed environment, it is possible to know the variables specifically. Keeping the root container saturated, crop transpiration will basically depend on the physiology of the plant (LAI, stomatal resistance, etc.) and the characteristics of the air (radiation, VPD, wind speed, etc.). Models based on computational fluid dynamics (CFD) have been developed, which predict the real evapotranspiration of the crop by activating the discrete ordinate (DO) radiation sub-model. For indoor crops, in the absence of solar radiation, and replaced with artificial lights (LEDs)—although it is true that they are hydroponic crops and water can be estimated through a balance of levels—it would be possible to use CFD to estimate transpiration by transforming flux units (Mmol) into radiation (W m−2). The transpiration of indoor crops works as a cooling system and stabilizes the environment of the plant factory or vertical farm. In each crop production system (from open field to indoor crops) models have been developed to manage water and microclimate. The result is reports that more than 90% of the water is saved.

Saved in:
Bibliographic Details
Main Authors: Flores Velazquez, Jorge, Akrami, Mohammad, Villagrán Munar, Edwin Andres
Format: article biblioteca
Language:eng
Published: Multidisciplinary Digital Publishing Institute 2022
Subjects:Cultivo - F01, Agricultura alternativa, Tecnología agrícola, Radiación, Cultivo, Transversal, http://aims.fao.org/aos/agrovoc/c_28792, http://aims.fao.org/aos/agrovoc/c_7cb2e55a, http://aims.fao.org/aos/agrovoc/c_6422, http://aims.fao.org/aos/agrovoc/c_2018,
Online Access:https://www.mdpi.com/2073-4395/12/11/2593
http://hdl.handle.net/20.500.12324/38901
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-38901
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language eng
topic Cultivo - F01
Agricultura alternativa
Tecnología agrícola
Radiación
Cultivo
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7cb2e55a
http://aims.fao.org/aos/agrovoc/c_6422
http://aims.fao.org/aos/agrovoc/c_2018
Cultivo - F01
Agricultura alternativa
Tecnología agrícola
Radiación
Cultivo
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7cb2e55a
http://aims.fao.org/aos/agrovoc/c_6422
http://aims.fao.org/aos/agrovoc/c_2018
spellingShingle Cultivo - F01
Agricultura alternativa
Tecnología agrícola
Radiación
Cultivo
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7cb2e55a
http://aims.fao.org/aos/agrovoc/c_6422
http://aims.fao.org/aos/agrovoc/c_2018
Cultivo - F01
Agricultura alternativa
Tecnología agrícola
Radiación
Cultivo
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7cb2e55a
http://aims.fao.org/aos/agrovoc/c_6422
http://aims.fao.org/aos/agrovoc/c_2018
Flores Velazquez, Jorge
Akrami, Mohammad
Villagrán Munar, Edwin Andres
The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
description The agricultural sector continues to be the largest consumer of useful water. Despite knowing the volume of water required by plants (evapotranspiration), methodologies must be adapted to current production systems. Based on the energy balance (radiation), it is feasible to establish models to estimate evapotranspiration depending on the production system: extensive crops, closed, and interior systems. The objective of this work was to present related research to measure and model the evapotranspiration of crops under current production techniques, based on the energy balance. The original FAO Penman–Monteith model is considered to be the model that best describes the evapotranspiration process, and with advances in instrumentation, there are sensors capable of measuring each of the variables it contains. From this model, procedures have been approximated for its use in extensive crops through remote sensing to calculate evapotranspiration, which jointly integrates the climatic variables and the type and age of the crop, with which real evapotranspiration is obtained. The same Penman–Monteith model has been adapted for use in greenhouse crops, where given the reduced root space and being in a closed environment, it is possible to know the variables specifically. Keeping the root container saturated, crop transpiration will basically depend on the physiology of the plant (LAI, stomatal resistance, etc.) and the characteristics of the air (radiation, VPD, wind speed, etc.). Models based on computational fluid dynamics (CFD) have been developed, which predict the real evapotranspiration of the crop by activating the discrete ordinate (DO) radiation sub-model. For indoor crops, in the absence of solar radiation, and replaced with artificial lights (LEDs)—although it is true that they are hydroponic crops and water can be estimated through a balance of levels—it would be possible to use CFD to estimate transpiration by transforming flux units (Mmol) into radiation (W m−2). The transpiration of indoor crops works as a cooling system and stabilizes the environment of the plant factory or vertical farm. In each crop production system (from open field to indoor crops) models have been developed to manage water and microclimate. The result is reports that more than 90% of the water is saved.
format article
topic_facet Cultivo - F01
Agricultura alternativa
Tecnología agrícola
Radiación
Cultivo
Transversal
http://aims.fao.org/aos/agrovoc/c_28792
http://aims.fao.org/aos/agrovoc/c_7cb2e55a
http://aims.fao.org/aos/agrovoc/c_6422
http://aims.fao.org/aos/agrovoc/c_2018
author Flores Velazquez, Jorge
Akrami, Mohammad
Villagrán Munar, Edwin Andres
author_facet Flores Velazquez, Jorge
Akrami, Mohammad
Villagrán Munar, Edwin Andres
author_sort Flores Velazquez, Jorge
title The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
title_short The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
title_full The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
title_fullStr The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
title_full_unstemmed The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
title_sort role of radiation in the modelling of crop evapotranspiration from open field to indoor crops
publisher Multidisciplinary Digital Publishing Institute
publishDate 2022
url https://www.mdpi.com/2073-4395/12/11/2593
http://hdl.handle.net/20.500.12324/38901
work_keys_str_mv AT floresvelazquezjorge theroleofradiationinthemodellingofcropevapotranspirationfromopenfieldtoindoorcrops
AT akramimohammad theroleofradiationinthemodellingofcropevapotranspirationfromopenfieldtoindoorcrops
AT villagranmunaredwinandres theroleofradiationinthemodellingofcropevapotranspirationfromopenfieldtoindoorcrops
AT floresvelazquezjorge roleofradiationinthemodellingofcropevapotranspirationfromopenfieldtoindoorcrops
AT akramimohammad roleofradiationinthemodellingofcropevapotranspirationfromopenfieldtoindoorcrops
AT villagranmunaredwinandres roleofradiationinthemodellingofcropevapotranspirationfromopenfieldtoindoorcrops
_version_ 1792484201782575104
spelling dig-bac-20.500.12324-389012024-02-22T03:02:05Z The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops Flores Velazquez, Jorge Akrami, Mohammad Villagrán Munar, Edwin Andres Cultivo - F01 Agricultura alternativa Tecnología agrícola Radiación Cultivo Transversal http://aims.fao.org/aos/agrovoc/c_28792 http://aims.fao.org/aos/agrovoc/c_7cb2e55a http://aims.fao.org/aos/agrovoc/c_6422 http://aims.fao.org/aos/agrovoc/c_2018 The agricultural sector continues to be the largest consumer of useful water. Despite knowing the volume of water required by plants (evapotranspiration), methodologies must be adapted to current production systems. Based on the energy balance (radiation), it is feasible to establish models to estimate evapotranspiration depending on the production system: extensive crops, closed, and interior systems. The objective of this work was to present related research to measure and model the evapotranspiration of crops under current production techniques, based on the energy balance. The original FAO Penman–Monteith model is considered to be the model that best describes the evapotranspiration process, and with advances in instrumentation, there are sensors capable of measuring each of the variables it contains. From this model, procedures have been approximated for its use in extensive crops through remote sensing to calculate evapotranspiration, which jointly integrates the climatic variables and the type and age of the crop, with which real evapotranspiration is obtained. The same Penman–Monteith model has been adapted for use in greenhouse crops, where given the reduced root space and being in a closed environment, it is possible to know the variables specifically. Keeping the root container saturated, crop transpiration will basically depend on the physiology of the plant (LAI, stomatal resistance, etc.) and the characteristics of the air (radiation, VPD, wind speed, etc.). Models based on computational fluid dynamics (CFD) have been developed, which predict the real evapotranspiration of the crop by activating the discrete ordinate (DO) radiation sub-model. For indoor crops, in the absence of solar radiation, and replaced with artificial lights (LEDs)—although it is true that they are hydroponic crops and water can be estimated through a balance of levels—it would be possible to use CFD to estimate transpiration by transforming flux units (Mmol) into radiation (W m−2). The transpiration of indoor crops works as a cooling system and stabilizes the environment of the plant factory or vertical farm. In each crop production system (from open field to indoor crops) models have been developed to manage water and microclimate. The result is reports that more than 90% of the water is saved. 2024-02-21T13:09:33Z 2024-02-21T13:09:33Z 2022 2022 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2073-4395/12/11/2593 2073-4395 http://hdl.handle.net/20.500.12324/38901 10.3390/agronomy12112593 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Agronomy 12 11 1 15 Martínez-Luna, D.; Mora-Flores, J.S.; Exebio-García, A.A.; Arana-Coronado, O.A.; Arjona-Suárez, E. Valor económico del agua en el Distrito de Riego 100, Alfajayucan, Hidalgo. Terra Latinoam. 2021, 39, e544. [CrossRef] Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998 Squeo, F.A.; León, M.F. Transpiración. In Fisiología Vegetal; Ediciones Universidad de La Serena; Squeo, F.A., Cardemil, L., Eds.; Universidad de La Serena: La Serena, Chile, 2007. Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [CrossRef] Hankerson, B.; Kjaersgaard, J.; Hay, C. Estimation of Evapotranspiration from Fields with and without Cover Crops Using Remote Sensing and in situ Methods. Remote Sens. 2012, 4, 3796–3812. [CrossRef] Mkhwanazi, M.; Chávez, J.L.; Andales, A.A. SEBAL-A: A remote sensing ET algorithm that accounts for advection with limited data. Part I: Development and validation. Remote Sens. 2015, 7, 15046–15067. [CrossRef] Irmak, A.; Ratcliffe, I.; Ranade, P.; Hubbard, K.G.; Singh, R.K.; Kamble, B.; Kjaersgaard, J. Estimation of land surface evapotranspi ration with a satellite remote sensing procedure. Great Plains Res. 2011, 21, 73–88. Li, Y.; Liu, C.; Liang, K. Spatial Patterns and Influence Factors of Conversion Coefficients between Two Typical Pan Evaporimeters in China. Water 2016, 8, 422. [CrossRef] Ta, T.H.; Shin, J.H.; Noh, E.H.; Son, J.E. Transpiration, growth, and water use efficiency of paprika plants (Capsicum annuum L.) as affected by irrigation frequency. Hortic. Environ. Biotechnol. 2012, 53, 129–134. [CrossRef] Tagliaferre, C.; de Oliveira, R.A.; Sediyama, G.C.; Cecon, P.R.; Martinez, M.A.; Materán, F.J.V. Performance of the Minievaporimeter UFV-1 to estimate the reference evapotranspiration in relation to the constant groundwater Table lysimeter. Idesia 2013, 31, 87–99. [CrossRef] Tsitsimpelis, I.; Wolfenden, I.; Taylor, C.J. Development of a grow-cell test facility for research into sustainable controlled environment agriculture. Biosyst. Eng. 2016, 150, 40–53. [CrossRef] Cuellar-Murcia, C.A.; Suárez-Salazar, J.C. Flujo de savia y potencial hídrico en plantas de tomate (Solanum lycopersicum L.) bajo condiciones de invernadero. Rev. Colomb. De Cienc. Hortícolas 2018, 12, 104–112. [CrossRef] Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Montero, J.I. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Sci. Hortic. 2005, 105, 163–175. [CrossRef] Nikolaou, G.; Neocleous, D.; Kitta, E.; Katsoulas, N. Estimation of Aerodynamic and Canopy Resistances in a Mediterranean Greenhouse Based on Instantaneous Leaf Temperature Measurements. Agronomy 2020, 10, 1985. [CrossRef] Shin, J.H.; Park, J.S.; Son, J.E. Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants. Agric. Water Manag. 2014, 135, 9–18. [CrossRef] Valipour, M. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 2015, 7, 625–635. [CrossRef] Katsoulas, N.; Stanghellini, C. Modelling Crop Transpiration in Greenhouses: Different Models for Different Applications. Agronomy 2019, 9, 392. [CrossRef] Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2010, 20, 1–18. [CrossRef] Rojas, A.; Noriega, A.; Herrera, G.; Chaparro, R. Sistema de riego para invernaderos hidropónicos basado en la evapotranspiración del cultivo. Nat. Y Desarro. 2003, 1, 23–29. Smigaj, M.; Gaulton, R.; Suarez, J.C.; Barr, S.L. Use of miniature thermal cameras for detection of physiological stress in conifers. Remote Sens. 2017, 9, 957. [CrossRef] Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing. Remote Sens. 2019, 11, 605. [CrossRef] Hermida-Carrera, C.; Kapralov, M.V.; Galmés, J. Rubisco catalytic properties and temperature response in crops. Plant Physiol. 2016, 171, 2549–2561. [CrossRef] Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [CrossRef] Lu, T.; Meng, Z.; Zhang, G.; Qi, M.; Sun, Z.; Liu, Y.; Li, T. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 2017, 8, 365. [CrossRef] Yokoyama, G.; Yasutake, D.; Tanizaki, T.; Kitano, M. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica 2019, 57, 740–747. [CrossRef] Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [CrossRef] Bastiaanssen, W.G.M. Remote Sensing in Water Resources Management: The State of the Art; International Water Management Institute (IWMI): Colombo, Sri Lanka, 1998; p. 118. Available online: https://publications.iwmi.org/pdf/H022865.pdf (accessed on 25 May 2022). Bastiaanssen, W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [CrossRef] Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [CrossRef] Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [CrossRef] Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [CrossRef] Heilman, J.L.; Kanemasu, E.T. An evaluation of a resistance form of the energy balance to estimate evapotranspiration. Agron. J. 1976, 68, 607–612. [CrossRef] Hatfield, J.L.; Pettier, A.; Jackson, R.D. Estimation of areal evapotranspiration based on remotely sensed surface temperature. Agric. Water Manag. 1983, 7, 341–350. [CrossRef] Reginato, R.; Jackson, R.; Pinter, P. Evapotranspiration calculated from remote multispectral and ground station meteorological data. Remote Sens. Environ. 1985, 18, 75–89. [CrossRef] Hatfield, J.L. Methods of estimating evapotranspiration. Irrig. Agric. Lands ASA Agron. Monogr. 1990, 30, 435–474 Hatfield, J.L.; Fuchs, M. Evapotranspiration models. In Management of Farm Irrigation Systems; ASAE Monograph; Hoffman, G.J., Howell, T.A., Solomon, K.H., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990; pp. 33–59. Senkondo, W.; Munishi, S.E.; Tumbo, M.; Nobert, J.; Lyon, S.W. Comparing Remotely-Sensed Surface Energy Balance Evapotran spiration Estimates in Heterogeneous and Data-Limited Regions: A Case Study of Tanzania’s Kilombero Valley. Remote Sens. 2019, 11, 1289. [CrossRef] Farah, H.O.; Bastiaanssen, W.G.M. Impact of spatial variations of land surface parameters on regional evaporation: A case study with remote sensing data. Hydrol. Process. 2001, 15, 1585–1607. [CrossRef] Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [CrossRef] Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [CrossRef] Allen, R.G.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W.G.M. SEBAL (Surface Energy Balance Algorithms for Land): Advanced Training and User’s Manual, Version 1.0; Idaho Department of Water Resources: Boise, ID, USA, 2002; p. 98. Allen, R.G.; Morton, C.; Kamble, B.; Kilic, A.; Huntington, J.; Thau, D.; Gorelick, N.; Erickson, T.; Moore, R.; Trezza, R.; et al. EEFlux: A Landsat-based Evapotranspiration Mapping Tool on the Google Earth Engine. In Proceedings of the ASABE/IA Irrigation Symposium, Long Beach, CA, USA; 2015; pp. 10–12. [CrossRef] Tasumi, M. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2003. Guillermo, F.O.; Ortega-Farías, S.; Daniel, D.; David, F.L.; Fuentes-Peñailillo, F. Water: Tools and functions to estimate actual evapotranspiration using Land Surface Energy Balance Model in R. R J. 2016, 8, 352–369. [CrossRef] Monteith, J.L.; Unsworth, M.H. Principles of Enviromental Physics; Eduard Arnold: London, UK, 1990. Stanghellini, C. Transpiration of Greenhouse Crops: An Aid to Climate Management. Ph D. Thesis, Institute of Agricultural Engineering IMAG, Wageningen, The Netherlands, 1987. Jolliet, O.; Bailey, B.J. The effects of climate ion tomato transpiration in greenhouse: Measurements and models comparison. Agric. For. Meteorol. 1992, 58, 43–62. [CrossRef] Fynn, R.P.; Al-Shooshan, A.; Short, T.H.; McMahon, R.W. Evapotranspiration measurements and modeling for a potted chrysan themum crop. Trans. ASAE 1993, 36, 1907–1913. [CrossRef] Jolliet, O. HORTITRANS, a model for predicting and optimizing humidity and transpiration in greenhouses. J. Agric. Eng. Res. 1994, 57, 23–37. [CrossRef] Papadakis, G.; Frangoudakis, A.; Kristis, S. Experimental investigation and modelling of heat and mass trasnfer betwen a tomato crop and the greenhouse environement. J. Agric. Eng. Res. 1994, 57, 217–227. [CrossRef] Boulard, T.; Wang, S. Radiative and convective heterogeneity in a plastic tunnel: Consequences on crop transpiration. Plasticulture 2002, 121, 23–35. Boulard, T.; Wang, S. Greenhouse crop transpiration simulation from external climate conditions. Agric. For. Meteorol. 2000, 100, 25–34. [CrossRef] Sbita, L.; Boulard, T.; Baille, A.; Annabi, M. A greenhouse climate model including the effects of ventilation and crop transpiration. Validation for south tunissia condictions. Acta Hortic. 1998, 458, 57–64. [CrossRef] Seginer, I. The Penman-Monteith evapotranspiration equations as an element in greenhouse ventilation design. Biosyst. Eng. 2002, 82, 423–439. [CrossRef] Montero, J.I.; Antón, A.; Muñoz, P.; Lorenzo, P. Transpiration from geranium grow under high temperatura and low humidities in greenhouses. Agric. For. Meteorol. 2001, 107, 323–332. [CrossRef] Bailey, B.; Montero, J.; Biel, C.; Wilkinson, D.; Anton, A.; Jolliet, O. Transpiration of Ficus benjamina: Comparison of measurements with predictions of the Penman-Monteith model and a simplified version. Agric. For. Meteorol. 1993, 65, 229–243. [CrossRef] McAdams, W.H. Heat Transmission; McGraw-Hill: New York, NY, USA, 1954; 532p. Grover, H.; Erk, S. Fundammentals of Heat Transfer; McGraw-Hill: New York, NY, USA, 1961; 696p. Baille, M.; Baille, A.; Delmon, D. Microclimate and transpiration of greenhouse rose crops. Agric. For. Meteorol. 1994, 71, 83–97. [CrossRef] Hamer, P.J.C. Validation of amodel for irrigation control of a greenhouse crop. Acta Hortic. 1998, 458, 75–82. [CrossRef] Chalabi, Z.; Bailey, B. Sensitivity analysis of a non-steady state model of the greenhouse microclimate. Agric. For. Meteorol. 1991, 56, 111–127. [CrossRef] Prenger, J.J.; Fynn, R.P.; Hansen, R.C. A comparison of four evapotranspiration models in a greenhouse environment. Trans. ASAE 2002, 45, 1779–1788. [CrossRef] Zamarripa, J.R.; López Cruz, I.L.; Castillo Salazar, J.A.; Ramírez Arias, J.A. Comparación de tres modelos para estimar la transpiración de un cultivo de jitomate en invernadero. Terra Latinoam. 2013, 31, 9–21. Baeza, E.J. Optimización del Diseño de los Sistemas de Ventilación en Invernadero Tipo Parral. Ph.D. Thesis, Universidad de Almeria, Almeria, Spain, 2007. Lee, I.; Short, T.H. A CFD model of volumetric flow rates for a naturally ventilated, multi-span greenhouse. In Proceedings of the 91st Annual International Meeting of ASAE, Orlando, FL, USA, 12–16 July 1998; ASAE Paper No. 987011. ASAE: St. Joseph, MI, USA, 1998 Lee, I.; Short, T.H. Predicted effects of internal horizontal screens on natural ventilation of a multi-span greenhouse. In Proceedings of the 91st Annual International Meeting of ASAE, Orlando, FL, USA, 12–16 July 1998; ASAE Paper No. 987014. ASAE: St. Joseph, MI, USA, 1998. Lee, I.; Short, T.H. Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Trans. ASAE 2000, 43, 745–753. [CrossRef] Haxaire, R.; Boulard, T.; Mermier, M. Greenhouse natural ventilation by wind forces. Acta Hortic. 2000, 534, 31–40. [CrossRef] Reichrath, S.; Davies, T. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse. J. Wind Eng. Ind. Aerodyn. 2002, 90, 139–149. [CrossRef] Roy, J.; Boulard, T. CFD predictions of natural ventilation and climate in a tunnel-type greenhouse using a transpiration active crop model. Acta Hortic. 2004, 633, 205–212. [CrossRef] Roy, J.; Boulard, T.; Lee, L.; Chave, M.; Nieto, C. CFD prediction of the distribution and Deposition of fungal spores in a greenhouse. Acta Hortic. 2006, 719, 279–286. [CrossRef] Flores-Velazquez, J. Análisis del Clima en los Principales Modelos de Invernaderos en Mexico Usando CFD. Ph.D Thesis, Universidad de Almeria, Almeria, Spain, 2010. Bournet, P.-E.; Rojano, F. Advances of Computational Fluid Dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Comput. Electron. Agric. 2022, 201, 107277. [CrossRef] Badji, A.; Benseddik, A.; Bensaha, H.; Boukhelifa, A.; Hasrane, I. Design, technology, and management of greenhouse: A review. J. Clean. Prod. 2022, 373, 133753. [CrossRef] Yang, X.; Short, T.; Fox, R.; Bauerle, W. Leaf temperature and stomatal resistance of greenhouse cucumber crop. Agric. For. Meteorol. 1990, 5, 197–209. [CrossRef] Pollet, S. Aplication of Penman-Monteith model to calculate the evapotranspiration of head letuce Latuca sativa L. var capitata in glasshouse conditions. Acta Hortic. 1999, 5, 25–30 Bartzanas, T.; Kittas, C.; Boulard, T. Effect of ventilation arrangement on winward ventilation of a tunnel greenhouse. Biosyst. Eng. 2004, 88, 479–490. [CrossRef] Kichah, A.; Bournet, P.; Chassériaux, G. Predicting crop transpiration in a glasshouse using computational fluid dynamics (CFD). Acta Hortic. 2008, 801, 933–940. [CrossRef] Bournet, P.E.; Kichah, A.; Chasseriaux, G. Analysis of radiation and transpiration heterogeneity inside a crop cover using computational fluid dynamics. Acta Hort. 2011, 893, 679–686. [CrossRef] Piscia, D.; Montero, J.I.; Baeza, E.; Bailey, B.J. A CFD greenhouse night-time condensation model. Biosyst. Eng. 2012, 111, 141–154. [CrossRef] Zhang, Y.; Kacira, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosyst. Eng. 2022, 220, 73–86. [CrossRef] Fuentes, D.; Flores, J.; Aguilar, A.; Roblero, R. Response of LED lights intensity on lettuce production in a home vertical farm. Rev. Fac. Agron. 2022, 39, e223920. [CrossRef] Ramos Gonzalías, Y.; Ramírez Lasso, E. Desarrollo de un sistema de iluminación artificial LED para cultivos en interiores—Vertical Farming (VF). Inf. Técnico 2016, 80, 111–120. [CrossRef] Thompson, H.C.; Langhans, R.W.; Both, A.-J.; Albright, L.D. Shoot and Root Temperature Effects on Lettuce Growth in a Floating Hydroponic System. J. Am. Soc. Hortic. Sci. 1998, 123, 361–364. [CrossRef] Naranjani, B.; Najafianashrafi, Z.; Pascual, C.; Agulto, I.; Chuang, P.-Y.A. Computational analysis of the environment in an indoor vertical farming system. Int. J. Heat Mass Transf. 2021, 186, 122460. [CrossRef] Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [CrossRef] Zhang, T.; Shi, Y.; Wang, Y.; Liu, Y.; Zhao, W.; Piao, F.; Sun, Z. The effect of different spectral LED light son the phenotypics and physiological charactristics of lettuce (Lactuca sativa) at picking stage. J. Biochem. Biotech. 2017, 1, 14–19 Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ application/pdf application/pdf Multidisciplinary Digital Publishing Institute Basilea (Suiza) Agronomy; Vol. 12, Núm. 11 (2022): Agronomy;p. 1 -15.