Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review

Agri-food waste biomass (AWB) is consolidating as a relevant bioresource for supplying material products and energy in a circular bioeconomy. However, its recovery and sustainable processing present trade-offs that must be understood. The integration of multi-criteria decision analysis (MCDA) into life-cycle assessment (LCA) tools has emerged as a novel way to address this challenge. This paper aims to conduct a systematic literature review to critically synthesize how MCDA has been integrated into LCA in an assessment framework and how helpful it is in AWB’s circular bioeconomy transition. The literature shows that the most studied AWBs are rice husk, sugarcane bagasse, and household food waste. These are processed through the technologies of composting, anaerobic digestion, and pyrolysis for applications such as biofuels, bioenergy, and soil amendment. Environmental LCA (E-LCA) is the most widely used LCA tool, while both the analytical hierarchy process (AHP) and the technique for ordering preference by similarity to the ideal solution (TOPSIS) are the most applied techniques for MCDA. The current trend of integrating MCDA into LCA does not fully cover the LCA phases, favoring solely the impact assessment phase and indicating that the other phases are overlooked. The potential and involvement of the stakeholders are partially explored. Although there are holistic sustainability assessments, the social implications are rarely considered. The number of MCDA/LCA studies is expected to increase, assessments at the micro-, meso-, and macro-scales to become more articulated, and the impact of the results to become more aligned with government and company goals.

Saved in:
Bibliographic Details
Main Authors: Romero Perdomo, Felipe Andrés, González Curbelo, Miguel Ángel
Format: article biblioteca
Language:eng
Published: MDPI 2023-03-12
Subjects:Economía circular, Agricultura sostenible, Toma de decisiones, Bioenergía, Ciclo vital, Transversal, http://aims.fao.org/aos/agrovoc/c_c9484b9b, http://aims.fao.org/aos/agrovoc/c_33561, http://aims.fao.org/aos/agrovoc/c_2147, http://aims.fao.org/aos/agrovoc/c_16526, http://aims.fao.org/aos/agrovoc/c_4317,
Online Access:https://www.mdpi.com/2071-1050/15/6/5026
http://hdl.handle.net/20.500.12324/38729
https://doi.org/10.3390/su15065026
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-bac-20.500.12324-38729
record_format koha
institution AGROSAVIA
collection DSpace
country Colombia
countrycode CO
component Bibliográfico
access En linea
databasecode dig-bac
tag biblioteca
region America del Sur
libraryname Biblioteca Agropecuaria de Colombia
language eng
topic Economía circular
Agricultura sostenible
Toma de decisiones
Bioenergía
Ciclo vital
Transversal
http://aims.fao.org/aos/agrovoc/c_c9484b9b
http://aims.fao.org/aos/agrovoc/c_33561
http://aims.fao.org/aos/agrovoc/c_2147
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_4317
Economía circular
Agricultura sostenible
Toma de decisiones
Bioenergía
Ciclo vital
Transversal
http://aims.fao.org/aos/agrovoc/c_c9484b9b
http://aims.fao.org/aos/agrovoc/c_33561
http://aims.fao.org/aos/agrovoc/c_2147
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_4317
spellingShingle Economía circular
Agricultura sostenible
Toma de decisiones
Bioenergía
Ciclo vital
Transversal
http://aims.fao.org/aos/agrovoc/c_c9484b9b
http://aims.fao.org/aos/agrovoc/c_33561
http://aims.fao.org/aos/agrovoc/c_2147
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_4317
Economía circular
Agricultura sostenible
Toma de decisiones
Bioenergía
Ciclo vital
Transversal
http://aims.fao.org/aos/agrovoc/c_c9484b9b
http://aims.fao.org/aos/agrovoc/c_33561
http://aims.fao.org/aos/agrovoc/c_2147
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_4317
Romero Perdomo, Felipe Andrés
González Curbelo, Miguel Ángel
Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review
description Agri-food waste biomass (AWB) is consolidating as a relevant bioresource for supplying material products and energy in a circular bioeconomy. However, its recovery and sustainable processing present trade-offs that must be understood. The integration of multi-criteria decision analysis (MCDA) into life-cycle assessment (LCA) tools has emerged as a novel way to address this challenge. This paper aims to conduct a systematic literature review to critically synthesize how MCDA has been integrated into LCA in an assessment framework and how helpful it is in AWB’s circular bioeconomy transition. The literature shows that the most studied AWBs are rice husk, sugarcane bagasse, and household food waste. These are processed through the technologies of composting, anaerobic digestion, and pyrolysis for applications such as biofuels, bioenergy, and soil amendment. Environmental LCA (E-LCA) is the most widely used LCA tool, while both the analytical hierarchy process (AHP) and the technique for ordering preference by similarity to the ideal solution (TOPSIS) are the most applied techniques for MCDA. The current trend of integrating MCDA into LCA does not fully cover the LCA phases, favoring solely the impact assessment phase and indicating that the other phases are overlooked. The potential and involvement of the stakeholders are partially explored. Although there are holistic sustainability assessments, the social implications are rarely considered. The number of MCDA/LCA studies is expected to increase, assessments at the micro-, meso-, and macro-scales to become more articulated, and the impact of the results to become more aligned with government and company goals.
format article
topic_facet Economía circular
Agricultura sostenible
Toma de decisiones
Bioenergía
Ciclo vital
Transversal
http://aims.fao.org/aos/agrovoc/c_c9484b9b
http://aims.fao.org/aos/agrovoc/c_33561
http://aims.fao.org/aos/agrovoc/c_2147
http://aims.fao.org/aos/agrovoc/c_16526
http://aims.fao.org/aos/agrovoc/c_4317
author Romero Perdomo, Felipe Andrés
González Curbelo, Miguel Ángel
author_facet Romero Perdomo, Felipe Andrés
González Curbelo, Miguel Ángel
author_sort Romero Perdomo, Felipe Andrés
title Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review
title_short Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review
title_full Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review
title_fullStr Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review
title_full_unstemmed Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review
title_sort integrating multi-criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: a systematic review
publisher MDPI
publishDate 2023-03-12
url https://www.mdpi.com/2071-1050/15/6/5026
http://hdl.handle.net/20.500.12324/38729
https://doi.org/10.3390/su15065026
work_keys_str_mv AT romeroperdomofelipeandres integratingmulticriteriatechniquesinlifecycletoolsforthecircularbioeconomytransitionofagrifoodwastebiomassasystematicreview
AT gonzalezcurbelomiguelangel integratingmulticriteriatechniquesinlifecycletoolsforthecircularbioeconomytransitionofagrifoodwastebiomassasystematicreview
_version_ 1792483987302645760
spelling dig-bac-20.500.12324-387292024-01-16T03:00:32Z Integrating multi-Criteria techniques in life-cycle tools for the circular bioeconomy transition of agri-food waste biomass: A systematic review Romero Perdomo, Felipe Andrés González Curbelo, Miguel Ángel Economía circular Agricultura sostenible Toma de decisiones Bioenergía Ciclo vital Transversal http://aims.fao.org/aos/agrovoc/c_c9484b9b http://aims.fao.org/aos/agrovoc/c_33561 http://aims.fao.org/aos/agrovoc/c_2147 http://aims.fao.org/aos/agrovoc/c_16526 http://aims.fao.org/aos/agrovoc/c_4317 Agri-food waste biomass (AWB) is consolidating as a relevant bioresource for supplying material products and energy in a circular bioeconomy. However, its recovery and sustainable processing present trade-offs that must be understood. The integration of multi-criteria decision analysis (MCDA) into life-cycle assessment (LCA) tools has emerged as a novel way to address this challenge. This paper aims to conduct a systematic literature review to critically synthesize how MCDA has been integrated into LCA in an assessment framework and how helpful it is in AWB’s circular bioeconomy transition. The literature shows that the most studied AWBs are rice husk, sugarcane bagasse, and household food waste. These are processed through the technologies of composting, anaerobic digestion, and pyrolysis for applications such as biofuels, bioenergy, and soil amendment. Environmental LCA (E-LCA) is the most widely used LCA tool, while both the analytical hierarchy process (AHP) and the technique for ordering preference by similarity to the ideal solution (TOPSIS) are the most applied techniques for MCDA. The current trend of integrating MCDA into LCA does not fully cover the LCA phases, favoring solely the impact assessment phase and indicating that the other phases are overlooked. The potential and involvement of the stakeholders are partially explored. Although there are holistic sustainability assessments, the social implications are rarely considered. The number of MCDA/LCA studies is expected to increase, assessments at the micro-, meso-, and macro-scales to become more articulated, and the impact of the results to become more aligned with government and company goals. 2024-01-15T21:06:01Z 2024-01-15T21:06:01Z 2023-03-12 2023 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://www.mdpi.com/2071-1050/15/6/5026 2071-1050 http://hdl.handle.net/20.500.12324/38729 https://doi.org/10.3390/su15065026 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng Sustainability 15 6 5026 5026 Tan, E.C.; Lamers, P. Circular bioeconomy concepts—A perspective. Front. Sustain. 2021, 2, 701509. D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734 Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. European Commission. Available online: https://knowledge4policy.ec.europa.eu/publication/sustainable-bioeconomy-europe-strengthening-connection-between-economy-society_en (accessed on 9 January 2023). Muscat, A.; de Olde, E.M.; Ripoll-Bosch, R.; Van Zanten, H.H.E.; Metze, T.A.P.; Termeer, C.J.A.M.; van Ittersum, M.K.; de Boer, I.J.M. Principles, drivers and opportunities of a circular bioeconomy. Nat. Food 2021, 2, 561–566. Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Recovery of agricultural waste biomass: A sustainability strategy for moving towards a circular bioeconomy. In Handbook of Solid Waste Management: Sustainability through Circular Economy, 1st ed.; Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R., Eds.; Springer: Singapore, 2021; Volume 1, pp. 1–30. United Nations Environment Programme. Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 10 January 2023). Sarangi, P.K.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Shadangi, K.P.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. Res. 2022, 30, 8526–8539. D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications. Sustainability 2021, 14, 200. Pfau, S.F.; Hagens, J.E.; Dankbaar, B.; Smits, A.J.M. Visions of Sustainability in Bioeconomy Research. Sustainability 2014, 6, 1222–1249. Salvador, R.; Barros, M.V.; Donner, M.; Brito, P.; Halog, A.; De Francisco, A.C. How to advance regional circular bioeconomy systems? Identifying barriers, challenges, drivers, and opportunities. Sustain. Prod. Consum. 2022, 32, 248–269. Giampietro, M. On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth. Ecol. Econ. 2019, 162, 143–156. Angouria-Tsorochidou, E.; Teigiserova, D.A.; Thomsen, M. Limits to circular bioeconomy in the transition towards decentralized biowaste management systems. Resour. Conserv. Recycl. 2021, 164, 105207. Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. Lam, C.-M.; Yu, I.K.; Hsu, S.-C.; Tsang, D.C. Life-cycle assessment on food waste valorisation to value-added products. J. Clean. Prod. 2018, 199, 840–848. Bjørn, A.; Owsianiak, M.; Molin, C.; Hauschild, M.Z. LCA history. In Life Cycle Assessment: Theory and Practice, 1st ed.; Hauschild, M., Rosenbaum, R., Olsen, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 17–30. Hauschild, M.Z. Introduction to LCA Methodology. In Life Cycle Assessment: Theory and Practice, 1st ed.; Hauschild, M., Rosenbaum, R., Olsen, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 59–66. Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A. Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. J. Clean. Prod. 2020, 270, 122509. Owsianiak, M.; Bjørn, A.; Laurent, A.; Molin, C.; Ryberg, M.W. LCA Applications. In Life Cycle Assessment: Theory and Practice, 1st ed.; Hauschild, M., Rosenbaum, R., Olsen, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 31–41. Moltesen, A.; Bjørn, A. LCA and Sustainability. In Life Cycle Assessment: Theory and Practice, 1st ed.; Hauschild, M., Rosenbaum, R., Olsen, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 43–55. Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. Vlachokostas, C.; Michailidou, A.; Achillas, C. Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review. Renew. Sustain. Energy Rev. 2021, 138, 110563. Ben Amor, S.; Belaid, F.; Benkraiem, R.; Ramdani, B.; Guesmi, K. Multi-criteria classification, sorting, and clustering: A bibliometric review and research agenda. Ann. Oper. Res. 2022, 316, 1–23. Esmail, B.A.; Geneletti, D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods Ecol. Evol. 2018, 9, 42–53. Onat, N.C.; Gumus, S.; Kucukvar, M.; Tatari, O. Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustain. Prod. Consum. 2016, 6, 12–25. Väisänen, S.; Mikkilä, M.; Havukainen, J.; Sokka, L.; Luoranen, M.; Horttanainen, M. Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. J. Clean. Prod. 2016, 137, 1330–1338. De Luca, A.I.; Iofrida, N.; Leskinen, P.; Stillitano, T.; Falcone, G.; Strano, A.; Gulisano, G. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 2017, 595, 352–370. Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. Castro-Muñoz, R.; Díaz-Montes, E.; Gontarek-Castro, E.; Boczkaj, G.; Galanakis, C.M. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 46–105 Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. Angulo-Mosquera, L.S.; Alvarado-Alvarado, A.A.; Rivas-Arrieta, M.J.; Cattaneo, C.R.; Rene, E.R.; García-Depraect, O. Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. Sci. Total Environ. 2021, 795, 148816. Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. Hodaifa, G.; Garcìa, C.A.; Rodroguez-Perez, S. Revalorization of agro-food residues as bioadsorbents for wastewater treatment. In Aqueous Phase Adsorption—Theory, Simulations and Experiments, 1st ed.; Singh, J.K., Verma, N., Eds.; Taylor & Francis Group: New York, NY, USA, 2018; Volume 1, pp. 249–282. Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2019, 233, 352–370. Mehta, N.; Shah, K.; Lin, Y.-I.; Sun, Y.; Pan, S.-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments 2021, 8, 20. Yaashikaa, P.; Kumar, P.S.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. Cuadrado-Osorio, P.D.; Ramírez-Mejía, J.M.; Mejía-Avellaneda, L.F.; Mesa, L.; Bautista, E.J. Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. Bioresour. Technol. Rep. 2022, 20, 101232. Torkayesh, A.E.; Rajaeifar, M.A.; Rostom, M.; Malmir, B.; Yazdani, M.; Suh, S.; Heidrich, O. Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies. Renew. Sustain. Energy Rev. 2022, 168, 112819. Angelo, A.C.M.; Saraiva, A.B.; Clímaco, J.C.N.; Infante, C.E.; Valle, R. Life Cycle Assessment and Multi-criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. J. Clean. Prod. 2017, 143, 744–756. Campos-Guzmán, V.; García-Cáscales, M.S.; Espinosa, N.; Urbina, A. Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renew. Sustain. Energy Rev. 2019, 104, 343–366. Tziolas, E.; Bournaris, T.; Manos, B.; Nastis, S. Life cycle assessment and multi-criteria analysis in agriculture: Synergies and insights. In Multicriteria Analysis in Agriculture: Current Trends and Recent Applications, 1st ed.; Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D., Eds.; Springer: Cham, Switzerland, 2018; Volume 1, pp. 289–321. Dias, L.C.; Freire, F.; Geldermann, J. Perspectives on multi-criteria decision analysis and life-cycle assessment. In New Perspectives in Multiple Criteria Decision Making, 1st ed.; Doumpos, M., Figueira, J., Greco, S., Zopounidis, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 315–329. Zanghelini, G.M.; Cherubini, E.; Soares, S.R. How Multi-Criteria Decision Analysis (MCDA) is aiding Life Cycle Assessment (LCA) in results interpretation. J. Clean. Prod. 2018, 172, 609–622. Geldermann, J.; Rentz, O. Multi-criteria Analysis for Technique Assessment: Case Study from Industrial Coating. J. Ind. Ecol. 2005, 9, 127–142. Miettinen, P.; Hämäläinen, R.P. How to benefit from decision analysis in environmental life cycle assessment (LCA). Eur. J. Oper. Res. 1997, 102, 279–294 Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. Ranjbari, M.; Esfandabadi, Z.S.; Quatraro, F.; Vatanparast, H.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Biomass and organic waste potentials towards implementing circular bioeconomy platforms: A systematic bibliometric analysis. Fuel 2022, 318, 123585. Delaney, A.; Tamás, P.A. Searching for evidence or approval? A commentary on database search in systematic reviews and alternative information retrieval methodologies. Res. Synth. Methods 2018, 9, 124–131. Gésan-Guiziou, G.; Alaphilippe, A.; Andro, M.; Aubin, J.; Bockstaller, C.; Botreau, R.; Buche, P.; Collet, C.; Darmon, N.; Delabuis, M.; et al. Annotation data about multi criteria assessment methods used in the agri-food research: The french national institute for agricultural research (INRA) experience. Data Brief 2019, 25, 104204. Liu, Y.; Lyu, Y.; Tian, J.; Zhao, J.; Ye, N.; Zhang, Y.; Chen, L. Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renew. Sustain. Energy Rev. 2021, 139, 110716. Dias, L.C.; Passeira, C.; Malça, J.; Freire, F. Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. Ann. Oper. Res. 2016, 312, 1359–1374. Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M. A multi-criteria sustainability assessment for biodiesel alternatives in Spain: Life cycle assessment normalization and weighting. Renew. Energy 2021, 164, 1195–1203. Myllyviita, T.; Holma, A.; Antikainen, R.; Lähtinen, K.; Leskinen, P. Assessing environmental impacts of biomass production chains—Application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). J. Clean. Prod. 2012, 29–30, 238–245. Joglekar, S.N.; Dalwankar, G.; Qureshi, N.; Mandavgane, S.A. Sugarcane valorization: Selection of process routes based on sustainability index. Environ. Sci. Pollut. Res. 2022, 29, 10812–10825. Ramesh, P.; Selvan, V.A.M.; Babu, D. Selection of sustainable lignocellulose biomass for second-generation bioethanol production for automobile vehicles using lifecycle indicators through fuzzy hybrid PyMCDM approach. Fuel 2022, 322, 124240 Raman, J.K.; Alves, C.M.; Gnansounou, E. A review on moringa tree and vetiver grassPotential biorefinery feedstocks. Bioresour. Technol. 2018, 249, 1044–1051. Ekener, E.; Hansson, J.; Larsson, A.; Peck, P. Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting—Tested on biomass based and fossil transportation fuels. J. Clean. Prod. 2018, 181, 337–351. Liard, G.; Lesage, P.; Samson, R.; Stuart, P.R. Systematic assessment of triticale-based biorefinery strategies: Environmental evaluation using life cycle assessment. Biofuels Bioprod. Biorefin. 2018, 12, S60–S72. Im-Orb, K.; Arpornwichanop, A. Process and sustainability analyses of the integrated biomass pyrolysis, gasification, and methanol synthesis process for methanol production. Energy 2020, 193, 116788. Tonini, D.; Wandl, A.; Meister, K.; Unceta, P.M.; Taelman, S.E.; Sanjuan-Delmás, D.; Dewulf, J.; Huygens, D. Quantitative sustainability assessment of household food waste management in the Amsterdam Metropolitan Area. Resour. Conserv. Recycl. 2020, 160, 104854. Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy. Waste Manag. 2020, 113, 359–368. Vega, G.C.; Sohn, J.; Bruun, S.; Olsen, S.I.; Birkved, M. Maximizing Environmental Impact Savings Potential through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment. Sustainability 2019, 11, 3836 Wang, B.; Song, J.; Ren, J.; Li, K.; Duan, H.; Wang, X. Selecting sustainable energy conversion technologies for agricultural residues: A fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resour. Conserv. Recycl. 2019, 142, 78–87. von Doderer, C.; Kleynhans, T. Determining the most sustainable lignocellulosic bioenergy system following a case study approach. Biomass Bioenergy 2014, 70, 273–286. Lim, J.Y.; How, B.S.; Teng, S.Y.; Leong, W.D.; Tang, J.P.; Lam, H.L.; Yoo, C.K. Multi-objective lifecycle optimization for oil palm fertilizer formulation: A hybrid P-graph and TOPSIS approach. Resour. Conserv. Recycl. 2021, 166, 105357. Acosta-Alba, I.; Chia, E.; Andrieu, N. The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels. Agric. Syst. 2019, 171, 155–170. Cardoso, T.F.; Watanabe, M.D.; Souza, A.; Chagas, M.F.; Cavalett, O.; Morais, E.R.; Nogueira, L.A.; Leal, M.R.L.; Braunbeck, O.A.; Cortez, L.A.; et al. Economic, environmental, and social impacts of different sugarcane production systems. Biofuels Bioprod. Biorefin. 2018, 12, 68–82. Garas, G.; Sayed, A.M.; Bakhoum, E.S.H. Application of nano waste particles in concrete for sustainable construction: A comparative study. Int. J. Sustain. Eng. 2021, 14, 2041–2047. Joglekar, S.N.; Kharkar, R.A.; Mandavgane, S.A.; Kulkarni, B.D. Sustainability assessment of brick work for low-cost housing: A comparison between waste based bricks and burnt clay bricks. Sustain. Cities Soc. 2018, 37, 396–406. Garcia-Garcia, G.; Woolley, E.; Rahimifard, S.; Colwill, J.; White, R.; Needham, L. A Methodology for Sustainable Management of Food Waste. Waste Biomass Valorization 2017, 8, 2209–2227. Vega, G.C.; Voogt, J.; Sohn, J.; Birkved, M.; Olsen, S.I. Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources. Sustainability 2020, 12, 3676. Vega, G.C.; Sohn, J.; Voogt, J.; Birkved, M.; Olsen, S.I.; Nilsson, A.E. Insights from combining techno-economic and life cycle assessment—A case study of polyphenol extraction from red wine pomace. Resour. Conserv. Recycl. 2021, 167, 105318. Alsaleh, A.; Aleisa, E. Triple Bottom-Line Evaluation of the Production of Animal Feed from Food Waste: A Life Cycle Assessment. Waste Biomass Valorization 2022, 13, 1–27. Sanaei, S.; Stuart, P.R. Systematic assessment of triticale-based biorefinery strategies: Techno-economic analysis to identify investment opportunities. Biofuels Bioprod. Biorefin. 2018, 12, S46–S59. Sadh, P.K.; Chawla, P.; Kumar, S.; Das, A.; Kumar, R.; Bains, A.; Sridhar, K.; Duhan, J.S.; Sharma, M. Recovery of agricultural waste biomass: A path for circular bioeconomy. Sci. Total Environ. 2023, 870, 161904. Jain, A.; Sarsaiya, S.; Awasthi, M.K.; Singh, R.; Rajput, R.; Mishra, U.C.; Chen, J.; Shi, J. Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks. Fuel 2022, 307, 121859. Salinas-Velandia, D.A.; Romero-Perdomo, F.; Numa-Vergel, S.; Villagrán, E.; Donado-Godoy, P.; Galindo-Pacheco, J.R. Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. Int. J. Environ. Res. Public Health 2022, 19, 12053. Mendoza-Labrador, J.; Romero-Perdomo, F.; Abril, J.; Hernández, J.P.; Uribe-Vélez, D.; Buitrago, R.B. Bacillus strains immobilized in alginate macrobeads enhance drought stress adaptation of guinea grass. Rhizosphere 2021, 19, 100385. Juanpera, M.; Ferrer-Martí, L.; Diez-Montero, R.; Ferrer, I.; Castro, L.; Escalante, H.; Garfí, M. A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia. Renew. Sustain. Energy Rev. 2022, 166, 112638. Onat, N.C.; Kucukvar, M. A systematic review on sustainability assessment of electric vehicles: Knowledge gaps and future perspectives. Environ. Impact Assess. Rev. 2022, 97, 106867. Gawel, E.; Pannicke, N.; Hagemann, N. A Path Transition Towards a Bioeconomy—The Crucial Role of Sustainability. Sustainability 2019, 11, 3005. Ncube, A.; Sadondo, P.; Makhanda, R.; Mabika, C.; Beinisch, N.; Cocker, J.; Gwenzi, W.; Ulgiati, S. Circular bioeconomy potential and challenges within an African context: From theory to practice. J. Clean. Prod. 2022, 367, 133068. Blum, N.U.; Haupt, M.; Bening, C.R. Why “Circular” doesn’t always mean “Sustainable”. Resour. Conserv. Recycl. 2020, 162, 105042. Kujala, J.; Sachs, S.; Leinonen, H.; Heikkinen, A.; Laude, D. Stakeholder Engagement: Past, Present, and Future. Bus. Soc. 2022, 61, 1136–1196. Kruetli, P.; Stauffacher, M.; Flueeler, T.; Scholz, R.W. Functional-dynamic public participation in technological decision-making: Site selection processes of nuclear waste repositories. J. Risk Res. 2010, 13, 861–875. Brandt, P.; Ernst, A.; Gralla, F.; Luederitz, C.; Lang, D.J.; Newig, J.; Reinert, F.; Abson, D.J.; von Wehrden, H. A review of transdisciplinary research in sustainability science. Ecol. Econ. 2013, 92, 1–15. Chen, W.; Holden, N.M. Tiered life cycle sustainability assessment applied to a grazing dairy farm. J. Clean. Prod. 2018, 172, 1169–1179. Thokala, P.; Madhavan, G. Stakeholder involvement in Multi-Criteria Decision Analysis. Cost Eff. Resour. Alloc. 2018, 16, 1–3. Iofrida, N.; De Luca, A.I.; Strano, A.; Gulisano, G. Can social research paradigms justify the diversity of approaches to social life cycle assessment? Int. J. Life Cycle Assess. 2016, 23, 464–480. Souza, R.; Rosenhead, J.; Salhofer, S.; Valle, R.; Lins, M. Definition of sustainability impact categories based on stakeholder perspectives. J. Clean. Prod. 2015, 105, 41–51. Wang, J.; Maier, S.D.; Horn, R.; Holländer, R.; Aschemann, R. Development of an Ex-Ante Sustainability Assessment Methodology for Municipal Solid Waste Management Innovations. Sustainability 2018, 10, 3208. Hossain, M.; Leminen, S.; Westerlund, M. A systematic review of living lab literature. J. Clean. Prod. 2019, 213, 976–988. Huttunen, S.; Manninen, K.; Leskinen, P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. J. Clean. Prod. 2014, 80, 5–16. Marttunen, M.; Mustajoki, J.; Dufva, M.; Karjalainen, T.P. How to design and realize participation of stakeholders in MCDA processes? A framework for selecting an appropriate approach. EURO J. Decis. Process. 2015, 3, 187–214. Stillitano, T.; Falcone, G.; Iofrida, N.; Spada, E.; Gulisano, G.; De Luca, A.I. A customized multi-cycle model for measuring the sustainability of circular pathways in agri-food supply chains. Sci. Total Environ. 2022, 844, 157229. Bareschino, P.; Mancusi, E.; Urciuolo, M.; Paulillo, A.; Chirone, R.; Pepe, F. Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization. Renew. Sustain. Energy Rev. 2020, 130, 109962. Miah, J.; Koh, S.; Stone, D. A hybridised framework combining integrated methods for environmental Life Cycle Assessment and Life Cycle Costing. J. Clean. Prod. 2017, 168, 846–866. Grubert, E. The Need for a Preference-Based Multicriteria Prioritization Framework in Life Cycle Sustainability Assessment. J. Ind. Ecol. 2017, 21, 1522–1535. Escobar, N.; Laibach, N. Sustainability check for bio-based technologies: A review of process-based and life cycle approaches. Renew. Sustain. Energy Rev. 2021, 135, 110213. Degieter, M.; Gellynck, X.; Goyal, S.; Ott, D.; De Steur, H. Life cycle cost analysis of agri-food products: A systematic review. Sci. Total Environ. 2022, 850, 158012. United Nations Environment Programme. Available online: https://www.unep.org/resources/report/guidelines-social-life-cycle-assessment-products (accessed on 14 January 2023). Rebolledo-Leiva, R.; Moreira, M.T.; González-García, S. Progress of social assessment in the framework of bioeconomy under a life cycle perspective. Renew. Sustain. Energy Rev. 2023, 175, 113162. Pesonen, H.-L.; Horn, S. Evaluating the Sustainability SWOT as a streamlined tool for life cycle sustainability assessment. Int. J. Life Cycle Assess. 2013, 18, 1780–1792. Hildebrandt, J.; Bezama, A.; Thrän, D. Insights from the Sustainability Monitoring Tool SUMINISTRO Applied to a Case Study System of Prospective Wood-Based Industry Networks in Central Germany. Sustainability 2020, 12, 3896. Sohn, J.; Vega, G.C.; Birkved, M. A Methodology Concept for Territorial Metabolism—Life Cycle Assessment: Challenges and Opportunities in Scaling from Urban to Territorial Assessment. Procedia CIRP 2018, 69, 89–93. Harris, S.; Martin, M.; Diener, D. Circularity for circularity’s sake? Scoping review of assessment methods for environmental performance in the circular economy. Sustain. Prod. Consum. 2021, 26, 172–186. Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. Recchia, L.; Boncinelli, P.; Cini, E.; Vieri, M.; Garbati Pegna, F.; Sarri, D. Energetic use of biomass and biofuels. In Multicriteria Analysis and LCA Techniques. With Applications to Agro-Engineering Problems, 1st ed.; Recchia, L., Boncinelli, P., Cini, E., Vieri, M., Garbati Pegna, F., Sarri, D., Eds.; Springer: London, UK, 2011; Volume 1, pp. 27–56. Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. Ho, W.; Ma, X. The state-of-the-art integrations and applications of the analytic hierarchy process. Eur. J. Oper. Res. 2018, 267, 399–414. Ishizaka, A.; Labib, A. Analytical hierarchy process and expert choice: Benefits and limitations. Oper. Res. Insight 2009, 22, 201–220. Olson, D. Comparison of weights in TOPSIS models. Math. Comput. Model. 2004, 40, 721–727. Zyoud, S.H.; Fuchs-Hanusch, D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst. Appl. 2017, 78, 158–181. Behzadian, M.; Kazemzadeh, R.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. Boix-Cots, D.; Pardo-Bosch, F.; Blanco, A.; Aguado, A.; Pujadas, P. A systematic review on MIVES: A sustainability-oriented multi-criteria decision-making method. Build. Environ. 2022, 223, 109515. Lopes, R.; Santos, R.; Videira, N.; Antunes, P. Co-creating a Vision and Roadmap for Circular Economy in the Food and Beverages Packaging Sector. Circ. Econ. Sustain. 2021, 1, 873–893. Leipold, S.; Petit-Boix, A.; Luo, A.; Helander, H.; Simoens, M.; Ashton, W.S.; Babbitt, C.W.; Bala, A.; Bening, C.R.; Birkved, M.; et al. Lessons, narratives, and research directions for a sustainable circular economy. J. Ind. Ecol. 2023, 27, 6–18. D’Adamo, I.; Gastaldi, M. Perspectives and Challenges on Sustainability: Drivers, Opportunities and Policy Implications in Universities. Sustainability 2023, 15, 3564. Narisetty, V.; Zhang, L.; Zhang, J.; Lin, C.S.K.; Tong, Y.W.; Show, P.L.; Bathia, S.K.; Misra, A.; Kumar, V. Fermentative production of 2, 3-Butanediol using bread waste–A green approach for sustainable management of food waste. Bioresour. Technol. 2022, 358, 127381. Kamal, H.; Habib, H.M.; Ali, A.; Show, P.L.; Koyande, A.K.; Kheadr, E.; Ibrahim, W.H. Food waste valorization potential: Fiber, sugar, and color profiles of 18 date seed varieties (Phoenix dactylifera, L.). J. Saudi Soc. Agric. Sci. 2022, 22, 133–138. Di Maria, F.; Sisani, F. A sustainability assessment for use on land or wastewater treatment of the digestate from bio-waste. Waste Manag. 2019, 87, 741–750. Kuhlman, T.; Farrington, J. What is sustainability? Sustainability 2010, 2, 3436–3448. Stone, J.; Garcia-Garcia, G.; Rahimifard, S. Development of a pragmatic framework to help food and drink manufacturers select the most sustainable food waste valorisation strategy. J. Environ. Manag. Valdivia, S.; Backes, J.G.; Traverso, M.; Sonnemann, G.; Cucurachi, S.; Guinée, J.B.; Goedkoop, M. Principles for the application of life cycle sustainability assessment. Int. J. Life Cycle Assess. 2021, 26, 1900–1905. Neugebauer, S.; Forin, S.; Finkbeiner, M. From Life Cycle Costing to Economic Life Cycle Assessment—Introducing an Economic Impact Pathway. Sustainability 2016, 8, 428. Wulf, C.; Werker, J.; Ball, C.; Zapp, P.; Kuckshinrichs, W. Review of Sustainability Assessment Approaches Based on Life Cycles. Sustainability 2019, 11, 5717. Leipold, S.; Weldner, K.; Hohl, M. Do we need a ‘circular society’? Competing narratives of the circular economy in the French food sector. Ecol. Econ. 2021, 187, 107086. Gutowski, T.G. A Critique of Life Cycle Assessment; Where Are the People? Procedia CIRP 2018, 69, 11–15. Murphy, K. The social pillar of sustainable development: A literature review and framework for policy analysis. Sustain. Sci. Pract. Policy 2012, 8, 15–29. Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Colombia MDPI Sustainability; Vol. 15, Núm. 5026 (2023). Sustainability (marzo); p. 1 -27