Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación

Las langostas espinosas (Crustacea: Decapoda: Palinuridae) habitan las zonas bajas de las plataformas insulares o continentales, fundamentalmente en ambientes rocosos o de arrecifes, aunque pueden encontrarse también a gran profundidad. Estos crustáceos son uno de los recursos pesqueros más importantes en todo el mundo por su altísimo valor comercial (Lipcius y Eggleston, 2000). De las aproximadamente 47 especies que existen, 33 soportan pesquerías comerciales siendo Panulirus, Palinurus y Jasus los géneros más importantes desde el punto de vista comercial. Las langostas del género Panulirus son típicas de regiones tropicales y constituyen el 82,2% de las capturas mundiales de palinúridos (Lipcius y Eggleston, 2000). La especie Panulirus argus es la que presenta la distribución geográfica más amplia, localizándose desde Carolina del Norte en EEUU hasta Brasil (Phillips y Melville-Smith, 2006).

Saved in:
Bibliographic Details
Main Authors: Perera Bravet., E., Universidad de Cádiz
Other Authors: Universidad de la Habana
Format: Theses and Dissertations biblioteca
Language:Spanish / Castilian
Published: 2012
Subjects:Lobster fisheries, Commercial fisheries,
Online Access:http://hdl.handle.net/1834/5380
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-aquadocs-1834-5380
record_format koha
institution UNESCO
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-aquadocs
tag biblioteca
region Europa del Oeste
libraryname Repositorio AQUADOCS
language Spanish / Castilian
topic Lobster fisheries
Commercial fisheries
Lobster fisheries
Commercial fisheries
spellingShingle Lobster fisheries
Commercial fisheries
Lobster fisheries
Commercial fisheries
Perera Bravet., E.
Universidad de Cádiz
Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
description Las langostas espinosas (Crustacea: Decapoda: Palinuridae) habitan las zonas bajas de las plataformas insulares o continentales, fundamentalmente en ambientes rocosos o de arrecifes, aunque pueden encontrarse también a gran profundidad. Estos crustáceos son uno de los recursos pesqueros más importantes en todo el mundo por su altísimo valor comercial (Lipcius y Eggleston, 2000). De las aproximadamente 47 especies que existen, 33 soportan pesquerías comerciales siendo Panulirus, Palinurus y Jasus los géneros más importantes desde el punto de vista comercial. Las langostas del género Panulirus son típicas de regiones tropicales y constituyen el 82,2% de las capturas mundiales de palinúridos (Lipcius y Eggleston, 2000). La especie Panulirus argus es la que presenta la distribución geográfica más amplia, localizándose desde Carolina del Norte en EEUU hasta Brasil (Phillips y Melville-Smith, 2006).
author2 Universidad de la Habana
author_facet Universidad de la Habana
Perera Bravet., E.
Universidad de Cádiz
format Theses and Dissertations
topic_facet Lobster fisheries
Commercial fisheries
author Perera Bravet., E.
Universidad de Cádiz
author_sort Perera Bravet., E.
title Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
title_short Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
title_full Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
title_fullStr Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
title_full_unstemmed Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
title_sort caracterización de las enzimas digestivas de la langosta panulirus argus (latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación
publishDate 2012
url http://hdl.handle.net/1834/5380
work_keys_str_mv AT pererabravete caracterizaciondelasenzimasdigestivasdelalangostapanulirusarguslatreille1804factoresintrinsecosyextrinsecosqueintervienenensuregulacion
AT universidaddecadiz caracterizaciondelasenzimasdigestivasdelalangostapanulirusarguslatreille1804factoresintrinsecosyextrinsecosqueintervienenensuregulacion
_version_ 1756075820928991232
spelling dig-aquadocs-1834-53802021-05-19T06:35:06Z Caracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulación Perera Bravet., E. Universidad de Cádiz Universidad de la Habana Lobster fisheries Commercial fisheries Las langostas espinosas (Crustacea: Decapoda: Palinuridae) habitan las zonas bajas de las plataformas insulares o continentales, fundamentalmente en ambientes rocosos o de arrecifes, aunque pueden encontrarse también a gran profundidad. Estos crustáceos son uno de los recursos pesqueros más importantes en todo el mundo por su altísimo valor comercial (Lipcius y Eggleston, 2000). De las aproximadamente 47 especies que existen, 33 soportan pesquerías comerciales siendo Panulirus, Palinurus y Jasus los géneros más importantes desde el punto de vista comercial. Las langostas del género Panulirus son típicas de regiones tropicales y constituyen el 82,2% de las capturas mundiales de palinúridos (Lipcius y Eggleston, 2000). La especie Panulirus argus es la que presenta la distribución geográfica más amplia, localizándose desde Carolina del Norte en EEUU hasta Brasil (Phillips y Melville-Smith, 2006). Universidad de Cádiz Universidad de La Habana Unpublished crustaceos 2014-03-14T15:21:00Z 2014-03-14T15:21:00Z 2012 Theses and Dissertations Phd thesis http://hdl.handle.net/1834/5380 es Adekoya, O. A., R. Helland, N. P. Willassen, and I. Sylte. 2006. Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 62:435-449. Ahsan, M. M., and S. Watabe. 2001. Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engraulis japonicus. J. Protein Chem. 20(1): 49-58. Amin, E., A. A. Saboury, H. Mansouri-Torshizi, S. Zolghadri, and A. K. Bordbar. 2010. Evaluation of p- phenylene-bis and phenyl dithiocarbamate sodium salts as inhibitors of mushroom tyrosinase. Acta Biochem. Pol. 57(3): 277–283. Ayala, Y. M., and E. Di Cera. 2000. A simple method for the determination of individual rate constants for substrate hydrolysis by serine proteases. Prot. Sci. 9: 1589-1593. Barret, A., N. Rawlings, and J. Woessner. 1998. Handbook of proteolytic enzymes. Academic Press, San Diego. Bieth, J.G. 1995. Theoretical and practical aspects of proteinase inhibition kinetics. Methods Enzymol. 248:59-84. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Brouwer, A. C., and J. F. Kirsch. 1982. Investigation of diffusion-limited rates of chymotrypsin reactions by viscosity variation. Biochemistry 21:1302-1307. Carrillo-Farnés, O., A. Forrellat-Barrios, S. Guerrero-Galván, and F. Vega-Villasante. 2007. A review of digestive enzyme activity in penaeid shrimps. Crustaceana 80(3): 257-275. Chase, T., and E. Shaw. 1967. p-nitrophenil-p’-guanidinobenzoate HCl: a new active site titrant for trypsin. Biochem. Biophys. Res. Commun. 29(4): 508-514. Copeland, R. A. 2000. Kinetics of single-substrate enzyme reactions (chapter 5). Pp 109-145 in Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. Robert A. Copeland, 2nd edition, Wiley-VCH, Inc. New York, NY. Craik, C. S., C. Largman, T. Fletcher, P. Barr, R. Fletterick, and W. J. Rutter. 1985. Redesigning trypsin: alteration of substrate specificity, catalytic activity and protein conformation. Science 228: 291-297. Dendinger, J. E., and K. L. O'Connor. 1990. Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. 95B (3): 525-530. Di Cera, E. 2009. Serine Proteases. IUBMB Life 61(5): 510–515. Erlanger, B. F., N. Kokousky, and W. Cohen. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95: 271–278. Figarella, C., G. A. Negri, and O. Guy. 1975. The two human trypsinogens. Inhibition spectra of the two human trypsins derived from their purified zymogens. Eur. J. Biochem. 53: 457-463. Fodor, K., V. Harmat, C. Hetényi, J. Kardos, J. Antal, A. Perczel, A. Patthy, G. Katona, and L. Gráf. 2005. Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition. J. Mol. Biol. 350: 156-169. García-Carreño, F. L., E. N. Dimes, and F. Haard. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem. 214: 65-69. Gorfe, A. A., B. O. Brandsdal, H. K. Leiros, R. Helland, and A. O. Smalås. 2000. Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site. Proteins 40: 207-217. Guizani, N., M. R. Marshall, C. I. Wei. 1992. Purification and characterization of a trypsin-like enzyme from the hepatopancreas of crayfish (Procambarus clarkii). Comp. Biochem. Physiol. 103B (4): 809-815. Hedstrom, L. 2002. Serine protease mechanism and specificity. Chem. Rev. 102: 4501-4524. Hedstrom, L. 1996. Trypsin: A case study in the structural determinants of enzyme specificity. Biol. Chem. 377: 465-470. Hedstrom, L., Szilagyi, L., and Rutter, W. J. 1992. Converting trypsin to chymotrypsin: the role of surface loops. Science 255:1249-1253. Hehemann, J. H., L. Redecke, J. Murugaiyan, M. von Bergen, C. Betzel, and R. Saborowski. 2008. Autoproteolytic stability of a trypsin from the marine crab Cancer pagurus. Biochem. Biophys. Res. Commun. 370: 566-571. Hernández-Cortes, P., L. Cerenius, F. L. García-Carreño, and K. Söderhäll. 1999. Trypsin from Pacifastacus leniusculus hepatopancreas: purification and cDNA cloning of the synthesized zymogen. J. Biol. Chem. 380: 499-501. Johnston, D., J. M. Hermans, and D. Yellowlees. 1995. Isolation and Characterization of a Trypsin from the Slipper Lobster, Thenus orientalis (Lund). Arch. Biochem. Biophys. 324(1): 35-40. Kim, H. R., S. P. Meyers, and J. S. Godber. 1992. Purification and characterization of anionic trypsins from the hepatopancreas of crayfish, Procambarus clarkii. Comp. Biochem. Physiol. 103B (2): 391-398. Klein, B., G. Le Moullac, D. Sellos, and A. Van Wormhoudt. 1996. Molecular cloning and sequencing of trypsin cDNA from Penaeus vannamei (Crustacea, Decapoda): use in assessing gene expression during the moult cycle. Int. J. Biochem. Cell Biol. 28: 551-563. Klein, B., D. Sellos, and A. Van Wormhoudt. 1998. Genomic organization and polymorphism of a Crustacean trypsin multi-gene family. Gene 216: 123-129. Knight, C. G. 1995. Active-site titration of peptidases. Meth. Enzymol. 248: 85-101. Labouesse, J., and M. Jervais. 1967. Preparation of chemically defined epsilon N-acetylated trypsin. Eur. J. Biochem. 2: 215-223. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacterophage T4. Nature 227: 680-685. Lopes, A. R., M. A. Juliano, S. R. Marana, L. Juliano, and W. R. Terra. 2006. Substrate specificity of insect trypsins and the role of their subsites in catalysis. Insect Biochem. Mol. Biol. 36: 130-140. Martínez, A., R. L. Olsen, and J. L. Serra. 1988. Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy Engraulis encrasicholus. Comp. Biochem. Physiol. 91B (4): 677-684. Muhlia-Almazán, A., A. Sánchez-Paz, and F. L. García-Carreño. 2008. Invertebrate trypsins: a review. J. Comp. Physiol. 178B: 655-672. Ohlsson, K., and H. Tegner. 1973. Anionic and cationic dog trypsin. Isolation and partial characterization. Biochim. Biophys. Acta 317(2): 328-337. Papaleo, E., M. Pasi, L. Riccardi, I. Sambi, P. Fantucci, and L. De Gioia. 2008. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett. 582: 1008-1018. Perdomo-Morales, R., V. Montero-Alejo, E. Perera, Z. Pardo-Ruiz, and E. Alonso-Jiménez. 2007. Phenoloxidase activity in the hemolymph of the spiny lobster Panulirus argus. Fish Shell. Immunol. 23: 1187-1195. Perdomo-Morales, R., V. Montero-Alejo, E. Perera, Z. Pardo-Ruiz, and E. Alonso-Jiménez. 2008. Hemocyanin-derived phenoloxidase activity in the hemolymph of the spiny lobster Panulirus argus. Biochim. Biophys. Acta 1780: 652-658. Perera, E., F. J. Moyano, M. Díaz, R. Perdomo-Morales, V. Montero, E. Alonso, O. Carrillo, and G. Galich. 2008. Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comp. Biochem. Physiol. 150B: 247-254. Perera, E., T. Pons, D. Hernández, F. J. Moyano, G. Martínez-Rodríguez, and J. M. Mancera. 2010a. New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket. FEBS J. 277: 3489-3501. Perera, E., F. J. Moyano, L. Rodríguez-Viera, A. Cervantes, G. Martínez-Rodríguez, and J. M. Mancera. 2010b. In vitro digestion of protein sources by crude enzyme extracts of the spiny lobster Panulirus argus (Latreille, 1804) hepatopancreas with different trypsin isoenzyme patterns. Aquaculture 310: 178-185. Perera, E., L. Rodríguez-Viera, J. Rodríguez-Casariego, I. Fraga, O. Carrillo, G. Martínez-Rodríguez, and J. M. Mancera. 2011. Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription levels in the lobster (Panulirus argus) by distinct signaling pathways. J. Exp. Biol. 215: 853-862. Perona, J. J., and C. S. Craik. 1995. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4: 337-360. Puigserver, A., and P. Desnuelle. 1971. Identification of an anionic trypsinogen in bovine pancreas. Biochim. Biophys. Acta 236(2): 499-502. Rascón, A. A., J. Gearin, J. Isoe, and R. L. Miesfeld. 2011. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti. BMC Biochemistry 12: 43. Sainz, J. C., F. L. García-Carreño, and P. Hernández-Cortés. 2004. Penaeus vannamei isotrypsins: purification and characterization. Comp. Biochem. Physiol. 138B: 155-162. Sainz, J. C., and J. H. Córdova-Murueta. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture 290: 190-195. Sarath, G., M. G. Zeece, and A. R. Penheiter. 2001. Protease assay methods (chapter 3). Pp 45-76 in Proteolytic enzymes: a practical approach. R. Beynon and J. S. Bond Eds. 2nd edition, Oxford University Press Inc, NY. Schwarzenberger, A., Zitt, A., Kroth, P., Mueller, S. and Von Elert, E. 2010. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors. BMC Physiology 10, 6. Sekizaki, H., K. Itoh, M. Murakami, E. Toyota, and K. Tanizawa. 2000. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Comp. Biochem. Physiol. 127B: 337-346. Sjödahl, J., A. Emmer, J. Vincent, and J. Roeraadea. 2002. Characterization of proteinases from Antarctic krill (Euphausia superba). Protein Expres. Purif. 26: 153-161. Toyota, E., D. Iyaguchi, H. Sekizaki, K. Itoh, and K. Tanizawa. 2007. Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta). Biol. Pharm. Bull. 30(9): 1648-1652. Voytek, P., and E. C. Gjessing. 1971. Studies of an anionic trypsinogen and its active enzyme from porcine pancreas. J. Biol. Chem. 246(2): 508-516. Whitehead, R. E., J. V. Ferrer, J. A. Javitch, and J. B. Justice. 2001. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J. Neurochem. 76: 1242-1251. Wu, Z., G. Jiang, P. Xiang, H. Xu. 2008. Anionic trypsin from North Pacific krill (Euphausia pacifica): purification and characterization. Int. J. Pept. Res. Ther. 14: 113-120. Williams, J. W., and J. F. Morrison. 1979. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63: 437-467. http://creativecommons.org/licenses/by-nc/3.0/ 230