Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.

In the era of the Anthropocene, the effects of climate change on the freshwater ecosystems are clearly complex, since warming and different temperature related drivers influence interacting physical, biogeochemical and biological processes. Climate change is predicted to have huge impacts on the Earth’s ecosystems through temperature increase, changed patterns of precipitation, more frequent extreme weather events, and combinations of these thus, climate change may become one of the major drivers affecting the diversity, composition, structure, and functioning of ecological communities over the next several decades. In this thesis, composed of two papers, we evaluate the effects of multiple factors related to climate change on the natural phytoplankton community. In the first one, we conducted an indoor experiment to test how increasing temperatures influence natural phytoplankton diversity and CO2 emissions in eutrophic ecosystems. Our results experimentally show that, under future scenarios of climate warming, the phytoplankton community composition can respond strongly, affecting ecosystem functions such as biomass production, resource use efficiency, carbon flux balance. Warming clearly aggravated the negative effects of eutrophication through the enhancement of cyanobacteria, all other factors being equal. Since the suggestion that eutrophication may promote climate change by increasing the release of greenhouse gases from fresh waters, it has been found that eutrophication may interact with warming via a positive feedback to atmospheric CH4 emissions. Here, we also found experimental evidence of a positive feedback between the major eutrophication symptom (cyanobacterial blooms) and warming, via higher CO2 emission rates in cyanobacteria dominated warmer systems, besides other changes in key ecosystem functions. In the second paper, we conducted an indoor short-term experiment to test how the natural phytoplankton community subjected to different temperatures reacted to the stressors of climate change (warming, eutrophication, extremes rainfall events) can affect the ecosystem stability. We find that the phytoplankton communities responds differently to disturbances. The environments with cyanobacterial blooms have benefited and proved to be resilient to the extremes rainfall events. In contrast, environments less stressed by warming have a slower response to the event of extreme rainfall, and that they often do not recover their biomass before the extreme rainfall event. Thus, given the multiple effects of climate change, the most stressed environments have greater ecosystem stability (resilience, resistance, and recovery) when compared to the least stressed. In summary, the findings of this thesis, we have experimental evidence with phytoplankton community, that climate change will profoundly affect ecosystem functions (e.g., biomass production, energy transfer, and carbon cycle). In this sense, we hope to contribute with policies to prevent or mitigate the ecological impacts of climate change.

Saved in:
Bibliographic Details
Main Author: Moresco, Geovani Arnhold
Format: Thesis/Dissertation biblioteca
Language:English
Published: Universidade Estadual de Maringá. Departamento de Biologia. Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais. 2021
Subjects:Fitoplâncton de água doce, Comunidades, Ecologia de, Mudanças climáticas, Eutrofização, Período Antropoceno, ASFA_2015::P::Phytoplankton, ASFA_2015::C::Communities (ecological), ASFA_2015::C::Climatic changes, ASFA_2015::E::Eutrophication, ASFA_2015::R::Rainfall, ASFA_2015::F::Freshwater environment, ASFA_2015::E::Ecosystems, ASFA_2015::Q::Quaternary period,
Online Access:http://hdl.handle.net/1834/41898
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-aquadocs-1834-41898
record_format koha
institution UNESCO
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-aquadocs
tag biblioteca
region Europa del Oeste
libraryname Repositorio AQUADOCS
language English
topic Fitoplâncton de água doce
Comunidades, Ecologia de
Mudanças climáticas
Eutrofização
Período Antropoceno
ASFA_2015::P::Phytoplankton
ASFA_2015::C::Communities (ecological)
ASFA_2015::C::Climatic changes
ASFA_2015::E::Eutrophication
ASFA_2015::R::Rainfall
ASFA_2015::F::Freshwater environment
ASFA_2015::E::Ecosystems
ASFA_2015::Q::Quaternary period
Fitoplâncton de água doce
Comunidades, Ecologia de
Mudanças climáticas
Eutrofização
Período Antropoceno
ASFA_2015::P::Phytoplankton
ASFA_2015::C::Communities (ecological)
ASFA_2015::C::Climatic changes
ASFA_2015::E::Eutrophication
ASFA_2015::R::Rainfall
ASFA_2015::F::Freshwater environment
ASFA_2015::E::Ecosystems
ASFA_2015::Q::Quaternary period
spellingShingle Fitoplâncton de água doce
Comunidades, Ecologia de
Mudanças climáticas
Eutrofização
Período Antropoceno
ASFA_2015::P::Phytoplankton
ASFA_2015::C::Communities (ecological)
ASFA_2015::C::Climatic changes
ASFA_2015::E::Eutrophication
ASFA_2015::R::Rainfall
ASFA_2015::F::Freshwater environment
ASFA_2015::E::Ecosystems
ASFA_2015::Q::Quaternary period
Fitoplâncton de água doce
Comunidades, Ecologia de
Mudanças climáticas
Eutrofização
Período Antropoceno
ASFA_2015::P::Phytoplankton
ASFA_2015::C::Communities (ecological)
ASFA_2015::C::Climatic changes
ASFA_2015::E::Eutrophication
ASFA_2015::R::Rainfall
ASFA_2015::F::Freshwater environment
ASFA_2015::E::Ecosystems
ASFA_2015::Q::Quaternary period
Moresco, Geovani Arnhold
Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.
description In the era of the Anthropocene, the effects of climate change on the freshwater ecosystems are clearly complex, since warming and different temperature related drivers influence interacting physical, biogeochemical and biological processes. Climate change is predicted to have huge impacts on the Earth’s ecosystems through temperature increase, changed patterns of precipitation, more frequent extreme weather events, and combinations of these thus, climate change may become one of the major drivers affecting the diversity, composition, structure, and functioning of ecological communities over the next several decades. In this thesis, composed of two papers, we evaluate the effects of multiple factors related to climate change on the natural phytoplankton community. In the first one, we conducted an indoor experiment to test how increasing temperatures influence natural phytoplankton diversity and CO2 emissions in eutrophic ecosystems. Our results experimentally show that, under future scenarios of climate warming, the phytoplankton community composition can respond strongly, affecting ecosystem functions such as biomass production, resource use efficiency, carbon flux balance. Warming clearly aggravated the negative effects of eutrophication through the enhancement of cyanobacteria, all other factors being equal. Since the suggestion that eutrophication may promote climate change by increasing the release of greenhouse gases from fresh waters, it has been found that eutrophication may interact with warming via a positive feedback to atmospheric CH4 emissions. Here, we also found experimental evidence of a positive feedback between the major eutrophication symptom (cyanobacterial blooms) and warming, via higher CO2 emission rates in cyanobacteria dominated warmer systems, besides other changes in key ecosystem functions. In the second paper, we conducted an indoor short-term experiment to test how the natural phytoplankton community subjected to different temperatures reacted to the stressors of climate change (warming, eutrophication, extremes rainfall events) can affect the ecosystem stability. We find that the phytoplankton communities responds differently to disturbances. The environments with cyanobacterial blooms have benefited and proved to be resilient to the extremes rainfall events. In contrast, environments less stressed by warming have a slower response to the event of extreme rainfall, and that they often do not recover their biomass before the extreme rainfall event. Thus, given the multiple effects of climate change, the most stressed environments have greater ecosystem stability (resilience, resistance, and recovery) when compared to the least stressed. In summary, the findings of this thesis, we have experimental evidence with phytoplankton community, that climate change will profoundly affect ecosystem functions (e.g., biomass production, energy transfer, and carbon cycle). In this sense, we hope to contribute with policies to prevent or mitigate the ecological impacts of climate change.
format Thesis/Dissertation
topic_facet Fitoplâncton de água doce
Comunidades, Ecologia de
Mudanças climáticas
Eutrofização
Período Antropoceno
ASFA_2015::P::Phytoplankton
ASFA_2015::C::Communities (ecological)
ASFA_2015::C::Climatic changes
ASFA_2015::E::Eutrophication
ASFA_2015::R::Rainfall
ASFA_2015::F::Freshwater environment
ASFA_2015::E::Ecosystems
ASFA_2015::Q::Quaternary period
author Moresco, Geovani Arnhold
author_facet Moresco, Geovani Arnhold
author_sort Moresco, Geovani Arnhold
title Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.
title_short Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.
title_full Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.
title_fullStr Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.
title_full_unstemmed Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização.
title_sort comunidade fitoplanctônica no antropoceno: efeitos das mudanças climáticas e eutrofização.
publisher Universidade Estadual de Maringá. Departamento de Biologia. Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais.
publishDate 2021
url http://hdl.handle.net/1834/41898
work_keys_str_mv AT morescogeovaniarnhold comunidadefitoplanctonicanoantropocenoefeitosdasmudancasclimaticaseeutrofizacao
AT morescogeovaniarnhold phytoplanktoncommunityintheanthropoceneeffectsofclimatechangeandeutrophication
_version_ 1806036759030530048
spelling dig-aquadocs-1834-418982024-07-25T13:30:29Z Comunidade fitoplanctônica no Antropoceno: efeitos das mudanças climáticas e eutrofização. Phytoplankton community in the Anthropocene: effects of climate change and eutrophication. Moresco, Geovani Arnhold Fitoplâncton de água doce Comunidades, Ecologia de Mudanças climáticas Eutrofização Período Antropoceno ASFA_2015::P::Phytoplankton ASFA_2015::C::Communities (ecological) ASFA_2015::C::Climatic changes ASFA_2015::E::Eutrophication ASFA_2015::R::Rainfall ASFA_2015::F::Freshwater environment ASFA_2015::E::Ecosystems ASFA_2015::Q::Quaternary period In the era of the Anthropocene, the effects of climate change on the freshwater ecosystems are clearly complex, since warming and different temperature related drivers influence interacting physical, biogeochemical and biological processes. Climate change is predicted to have huge impacts on the Earth’s ecosystems through temperature increase, changed patterns of precipitation, more frequent extreme weather events, and combinations of these thus, climate change may become one of the major drivers affecting the diversity, composition, structure, and functioning of ecological communities over the next several decades. In this thesis, composed of two papers, we evaluate the effects of multiple factors related to climate change on the natural phytoplankton community. In the first one, we conducted an indoor experiment to test how increasing temperatures influence natural phytoplankton diversity and CO2 emissions in eutrophic ecosystems. Our results experimentally show that, under future scenarios of climate warming, the phytoplankton community composition can respond strongly, affecting ecosystem functions such as biomass production, resource use efficiency, carbon flux balance. Warming clearly aggravated the negative effects of eutrophication through the enhancement of cyanobacteria, all other factors being equal. Since the suggestion that eutrophication may promote climate change by increasing the release of greenhouse gases from fresh waters, it has been found that eutrophication may interact with warming via a positive feedback to atmospheric CH4 emissions. Here, we also found experimental evidence of a positive feedback between the major eutrophication symptom (cyanobacterial blooms) and warming, via higher CO2 emission rates in cyanobacteria dominated warmer systems, besides other changes in key ecosystem functions. In the second paper, we conducted an indoor short-term experiment to test how the natural phytoplankton community subjected to different temperatures reacted to the stressors of climate change (warming, eutrophication, extremes rainfall events) can affect the ecosystem stability. We find that the phytoplankton communities responds differently to disturbances. The environments with cyanobacterial blooms have benefited and proved to be resilient to the extremes rainfall events. In contrast, environments less stressed by warming have a slower response to the event of extreme rainfall, and that they often do not recover their biomass before the extreme rainfall event. Thus, given the multiple effects of climate change, the most stressed environments have greater ecosystem stability (resilience, resistance, and recovery) when compared to the least stressed. In summary, the findings of this thesis, we have experimental evidence with phytoplankton community, that climate change will profoundly affect ecosystem functions (e.g., biomass production, energy transfer, and carbon cycle). In this sense, we hope to contribute with policies to prevent or mitigate the ecological impacts of climate change. Na era do Antropoceno, os efeitos das mudanças climáticas nos ecossistemas aquáticos continentais apresentam múltiplos fatores, uma vez que o aquecimento e os diferentes fatores relacionados às mudanças climáticas influenciam os processos físicos, biogeoquímicos e biológicos. As mudanças climáticas causam impactos relevantes nos ecossistemas da Terra por meio do aumento da temperatura, mudanças nos padrões de precipitação, eventos climáticos extremos mais frequentes, mudanças nas concentrações de CO2, entre outros. Os efeitos das mudanças climáticas somam-se aos efeitos contínuos de outros fatores globais e locais que afetam a diversidade, composição, estrutura e funcionamento das comunidades ecológicas, como eutrofização, fragmentação do habitat, mudanças no uso da terra e mudanças nos ciclos biogeoquímicos. Assim, esta tese é composta por dois segmentos. Para o primeiro segmento, desenvolveu-se um experimento para testar como o aumento das temperaturas influencia a diversidade fitoplanctônica e as emissões de CO2 em ambientes eutróficos. Os resultados mostraram que, em cenários futuros de aquecimento, a composição da comunidade fitoplanctônica é alterada, afetando funções do ecossistema, como produção de biomassa, eficiência no uso de recursos e balanço de fluxo de carbono. O aquecimento agravou os efeitos negativos da eutrofização através do aumento das cianobactérias. Encontrou-se que a eutrofização pode promover mudanças climáticas, aumentando a liberação de gases de efeito estufa com evidências experimentais de um feedback positivo entre o principal sintoma de eutrofização (florações de cianobactérias) e o aquecimento, por meio de taxas de emissão de CO2 mais altas em sistemas mais quentes dominados por cianobactérias, além de outras mudanças nas principais funções do ecossistema. No segundo segmento, conduziu-se um experimento de curto prazo para testar como diferentes comunidades fitoplanctônicas naturais, promovidas por diferentes regimes de temperatura, reagiram a um evento de chuva extrema simulada e, assim, analisar a estabilidade e resiliência do ecossistema. Constatou-se que as comunidades fitoplanctônicas submetidas a diferentes temperaturas responderam de forma diferente aos distúrbios. As comunidades dominadas por florações de cianobactérias se beneficiaram e mostraram-se resilientes ao evento de chuvas extremas. Em contraste, as comunidades supostamente menos estressadas pelo aquecimento tiveram uma resposta mais lenta ao evento de chuvas extremas e não recuperaram a biomassa antes do evento de chuvas extremas. Descobriu-se que as comunidades aparentemente mais estressadas (ou seja, sob a temperatura mais alta) têm maior estabilidade do ecossistema (resiliência, resistência e recuperação) quando comparadas às comunidades menos estressadas. Em suma, a evidência experimental indica que as mudanças climáticas afetarão profundamente a estrutura da comunidade e algumas funções do ecossistema (por exemplo, produção de biomassa, transferência de energia e ciclo do carbono). Destaca-se a necessidade de fortalecer as políticas e medidas locais para prevenir ou mitigar os impactos ecológicos das mudanças climáticas. PhD 2022-03-15T20:51:13Z 2022-03-15T20:51:13Z 2021 Thesis/Dissertation http://hdl.handle.net/1834/41898 en http://nou-rau.uem.br/nou-rau/document/?code=4587 http://repositorio.uem.br:8080/jspui/handle/1/6549 103pp. Universidade Estadual de Maringá. Departamento de Biologia. Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais.