Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.

This article compares the clustering of Brazilian municipalities according to their agricultural diversity using two approaches, one based on feature engineering and the other based on feature extraction using Deep Learning based on autoencoders and cluster analysis based on k-means and Self-Organizing Maps. The analyzes were conducted from panel data referring to IBGE?s annual estimates of Brazilian agricultural production between 1999 and 2018. Different structures of simple stacked undercomplete autoencoders were analyzed, varying the number of layers and neurons in each of them, including the latent layer. The asymmetric exponential linear loss function was also evaluated to cope with the sparse data. The results show that in comparison with the ground truth adopted, the autoencoder model combined with the k-means presented a superior result than the clustering of the raw data from the k-means, demonstrating the ability of simple autoencoders to represent from their latent layer important features of the data. Although the general accuracy is low, the results are promising, considering that we evaluated the most simple strategy for Deep Clustering.

Saved in:
Bibliographic Details
Main Authors: SILVA, M. A. S. da, MATOS, L. N., SANTOS, F. E. de O., DOMPIERI, M. H. G., MOURA, F. R. de
Other Authors: MARCOS AURELIO SANTOS DA SILVA, CPATC; LEONARDO N. MATOS, UFS; FLAVIO E. DE O. SANTOS, UFS; MARCIA HELENA GALINA DOMPIERI, CNPM; FABIO R. DE MOURA, UFS.
Format: Artigo em anais e proceedings biblioteca
Language:Ingles
English
Published: 2023-08-04
Subjects:Inteligência artifical, Análise de dados espacial, Produção Agrícola, Artificial intelligence, Agricultural products,
Online Access:http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155654
https://doi.org/10.5753/eniac.2022
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-alice-doc-1155654
record_format koha
spelling dig-alice-doc-11556542023-08-04T14:23:54Z Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders. SILVA, M. A. S. da MATOS, L. N. SANTOS, F. E. de O. DOMPIERI, M. H. G. MOURA, F. R. de MARCOS AURELIO SANTOS DA SILVA, CPATC; LEONARDO N. MATOS, UFS; FLAVIO E. DE O. SANTOS, UFS; MARCIA HELENA GALINA DOMPIERI, CNPM; FABIO R. DE MOURA, UFS. Inteligência artifical Análise de dados espacial Produção Agrícola Artificial intelligence Agricultural products This article compares the clustering of Brazilian municipalities according to their agricultural diversity using two approaches, one based on feature engineering and the other based on feature extraction using Deep Learning based on autoencoders and cluster analysis based on k-means and Self-Organizing Maps. The analyzes were conducted from panel data referring to IBGE?s annual estimates of Brazilian agricultural production between 1999 and 2018. Different structures of simple stacked undercomplete autoencoders were analyzed, varying the number of layers and neurons in each of them, including the latent layer. The asymmetric exponential linear loss function was also evaluated to cope with the sparse data. The results show that in comparison with the ground truth adopted, the autoencoder model combined with the k-means presented a superior result than the clustering of the raw data from the k-means, demonstrating the ability of simple autoencoders to represent from their latent layer important features of the data. Although the general accuracy is low, the results are promising, considering that we evaluated the most simple strategy for Deep Clustering. 2023-08-04T14:23:53Z 2023-08-04T14:23:53Z 2023-08-04 2022 Artigo em anais e proceedings In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL, 19., 2023, Campinas. Anais... Porto Alegre: Sociedade Brasileira de Computação, 2022. 2763-9061 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155654 https://doi.org/10.5753/eniac.2022 Ingles en openAccess
institution EMBRAPA
collection DSpace
country Brasil
countrycode BR
component Bibliográfico
access En linea
databasecode dig-alice
tag biblioteca
region America del Sur
libraryname Sistema de bibliotecas de EMBRAPA
language Ingles
English
topic Inteligência artifical
Análise de dados espacial
Produção Agrícola
Artificial intelligence
Agricultural products
Inteligência artifical
Análise de dados espacial
Produção Agrícola
Artificial intelligence
Agricultural products
spellingShingle Inteligência artifical
Análise de dados espacial
Produção Agrícola
Artificial intelligence
Agricultural products
Inteligência artifical
Análise de dados espacial
Produção Agrícola
Artificial intelligence
Agricultural products
SILVA, M. A. S. da
MATOS, L. N.
SANTOS, F. E. de O.
DOMPIERI, M. H. G.
MOURA, F. R. de
Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.
description This article compares the clustering of Brazilian municipalities according to their agricultural diversity using two approaches, one based on feature engineering and the other based on feature extraction using Deep Learning based on autoencoders and cluster analysis based on k-means and Self-Organizing Maps. The analyzes were conducted from panel data referring to IBGE?s annual estimates of Brazilian agricultural production between 1999 and 2018. Different structures of simple stacked undercomplete autoencoders were analyzed, varying the number of layers and neurons in each of them, including the latent layer. The asymmetric exponential linear loss function was also evaluated to cope with the sparse data. The results show that in comparison with the ground truth adopted, the autoencoder model combined with the k-means presented a superior result than the clustering of the raw data from the k-means, demonstrating the ability of simple autoencoders to represent from their latent layer important features of the data. Although the general accuracy is low, the results are promising, considering that we evaluated the most simple strategy for Deep Clustering.
author2 MARCOS AURELIO SANTOS DA SILVA, CPATC; LEONARDO N. MATOS, UFS; FLAVIO E. DE O. SANTOS, UFS; MARCIA HELENA GALINA DOMPIERI, CNPM; FABIO R. DE MOURA, UFS.
author_facet MARCOS AURELIO SANTOS DA SILVA, CPATC; LEONARDO N. MATOS, UFS; FLAVIO E. DE O. SANTOS, UFS; MARCIA HELENA GALINA DOMPIERI, CNPM; FABIO R. DE MOURA, UFS.
SILVA, M. A. S. da
MATOS, L. N.
SANTOS, F. E. de O.
DOMPIERI, M. H. G.
MOURA, F. R. de
format Artigo em anais e proceedings
topic_facet Inteligência artifical
Análise de dados espacial
Produção Agrícola
Artificial intelligence
Agricultural products
author SILVA, M. A. S. da
MATOS, L. N.
SANTOS, F. E. de O.
DOMPIERI, M. H. G.
MOURA, F. R. de
author_sort SILVA, M. A. S. da
title Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.
title_short Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.
title_full Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.
title_fullStr Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.
title_full_unstemmed Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders.
title_sort feature engineering vs. extraction: clustering brazilian municipalities through spatial panel agricultural data via autoencoders.
publishDate 2023-08-04
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1155654
https://doi.org/10.5753/eniac.2022
work_keys_str_mv AT silvamasda featureengineeringvsextractionclusteringbrazilianmunicipalitiesthroughspatialpanelagriculturaldataviaautoencoders
AT matosln featureengineeringvsextractionclusteringbrazilianmunicipalitiesthroughspatialpanelagriculturaldataviaautoencoders
AT santosfedeo featureengineeringvsextractionclusteringbrazilianmunicipalitiesthroughspatialpanelagriculturaldataviaautoencoders
AT dompierimhg featureengineeringvsextractionclusteringbrazilianmunicipalitiesthroughspatialpanelagriculturaldataviaautoencoders
AT mourafrde featureengineeringvsextractionclusteringbrazilianmunicipalitiesthroughspatialpanelagriculturaldataviaautoencoders
_version_ 1775947749502484480