LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017
The LiDAR data Feliz Natal municipality - IV (FND_A01_2017_LiDAR) refers to the survey carried out in the Feliz Natal municipality, Mato Grosso state, Brazil. The data were collected under the project Sustainable Landscapes, a project supported by the United States Agency for International Development (USAID) and US Department of State. The United States Forest Service working in collaboration with the Brazilian Agricultural Research Corporation (Embrapa) have made possible the provision of high accuracy LiDAR data aiming at developing new methods and generating knowledge in the field. This dataset contains: a. Classified LAS formatted point cloud data (vendor delivered); b. Digital Terrain Model (vendor delivered); c. Map of LiDAR coverage area and block boundaries; “Data were acquired by the Sustainable Landscapes Brazil project supported by the Brazilian Agricultural Research Corporation (Embrapa), the US Forest Service, USAID and the US Department of State."
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | LiDAR data biblioteca |
Language: | English |
Published: |
Redape
2017
|
Subjects: | Agricultural Sciences, Earth and Environmental Sciences, remote sensing, forest degradation, forest cover, LIDAR, sistema de informação geográfica, cobertura florestal, |
Online Access: | https://doi.org/10.48432/SLULIX |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dat-redape-br-10.48432SLULIX |
---|---|
record_format |
Dataverse |
spelling |
dat-redape-br-10.48432SLULIX2023-03-17T05:00:01ZLiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017https://doi.org/10.48432/SLULIXSantos, Maiza Nara dosKeller, MichaelBatistella, MateusRedapeThe LiDAR data Feliz Natal municipality - IV (FND_A01_2017_LiDAR) refers to the survey carried out in the Feliz Natal municipality, Mato Grosso state, Brazil. The data were collected under the project Sustainable Landscapes, a project supported by the United States Agency for International Development (USAID) and US Department of State. The United States Forest Service working in collaboration with the Brazilian Agricultural Research Corporation (Embrapa) have made possible the provision of high accuracy LiDAR data aiming at developing new methods and generating knowledge in the field. This dataset contains: a. Classified LAS formatted point cloud data (vendor delivered); b. Digital Terrain Model (vendor delivered); c. Map of LiDAR coverage area and block boundaries; “Data were acquired by the Sustainable Landscapes Brazil project supported by the Brazilian Agricultural Research Corporation (Embrapa), the US Forest Service, USAID and the US Department of State."Os dados LiDAR do município de Feliz Natal - IV (FND_A01_2017_LiDAR) referem-se ao levantamento realizado no município de Feliz Natal, Mato Grosso, Brasil. Os dados foram coletados no âmbito do projeto Paisagens Sustentáveis, um projeto apoiado pela Agência dos Estados Unidos para o Desenvolvimento Internacional (USAID) e Departamento de Estado dos EUA. O Serviço Florestal dos Estados Unidos trabalhando em colaboração com a Empresa Brasileira de Pesquisa Agropecuária (Embrapa) tornou possível o fornecimento de dados LiDAR de alta precisão com o objetivo de desenvolver novos métodos e gerar conhecimento no campo. Este conjunto de dados contém: a. Dados classificados de nuvem de pontos formatados em LAS (entregues pelo fornecedor); b. Modelo Digital de Terreno (entregue pelo fornecedor); c. Mapa da área de cobertura LiDAR e limites dos blocos; “Os dados foram adquiridos pelo projeto Paisagens Sustentáveis Brasil, apoiado pela Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Serviço Florestal dos EUA, USAID e Departamento de Estado dos EUA.”Agricultural SciencesEarth and Environmental Sciencesremote sensingforest degradationforest coverLIDARsistema de informação geográficacobertura florestalEnglish2017-04-12Bolfe, VictóriaDrucker, Debora PignatariDrucker, Debora PignatariVictoria, Daniel de CastroMorton, DouglasPinagé, Ekena RangelVictoria, Daniel de CastroLiDAR dataDados geoespaciais |
institution |
EMBRAPA |
collection |
Dataverse |
country |
Brasil |
countrycode |
BR |
component |
Datos de investigación |
access |
En linea En linea |
databasecode |
dat-redape-br |
tag |
biblioteca |
region |
America del Sur |
libraryname |
Sistema de bibliotecas de EMBRAPA |
language |
English |
topic |
Agricultural Sciences Earth and Environmental Sciences remote sensing forest degradation forest cover LIDAR sistema de informação geográfica cobertura florestal Agricultural Sciences Earth and Environmental Sciences remote sensing forest degradation forest cover LIDAR sistema de informação geográfica cobertura florestal |
spellingShingle |
Agricultural Sciences Earth and Environmental Sciences remote sensing forest degradation forest cover LIDAR sistema de informação geográfica cobertura florestal Agricultural Sciences Earth and Environmental Sciences remote sensing forest degradation forest cover LIDAR sistema de informação geográfica cobertura florestal Santos, Maiza Nara dos Keller, Michael Batistella, Mateus LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017 |
description |
The LiDAR data Feliz Natal municipality - IV (FND_A01_2017_LiDAR) refers to the survey carried out in the Feliz Natal municipality, Mato Grosso state, Brazil. The data were collected under the project Sustainable Landscapes, a project supported by the United States Agency for International Development (USAID) and US Department of State. The United States Forest Service working in collaboration with the Brazilian Agricultural Research Corporation (Embrapa) have made possible the provision of high accuracy LiDAR data aiming at developing new methods and generating knowledge in the field.
This dataset contains:
a. Classified LAS formatted point cloud data (vendor delivered);
b. Digital Terrain Model (vendor delivered);
c. Map of LiDAR coverage area and block boundaries;
“Data were acquired by the Sustainable Landscapes Brazil project supported by the Brazilian Agricultural Research Corporation (Embrapa), the US Forest Service, USAID and the US Department of State." |
author2 |
Bolfe, Victória |
author_facet |
Bolfe, Victória Santos, Maiza Nara dos Keller, Michael Batistella, Mateus |
format |
LiDAR data |
topic_facet |
Agricultural Sciences Earth and Environmental Sciences remote sensing forest degradation forest cover LIDAR sistema de informação geográfica cobertura florestal |
author |
Santos, Maiza Nara dos Keller, Michael Batistella, Mateus |
author_sort |
Santos, Maiza Nara dos |
title |
LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017 |
title_short |
LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017 |
title_full |
LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017 |
title_fullStr |
LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017 |
title_full_unstemmed |
LiDAR survey on 209.7 hectares in Feliz Natal IV, Mato Grosso, Brasil in 2017 |
title_sort |
lidar survey on 209.7 hectares in feliz natal iv, mato grosso, brasil in 2017 |
publisher |
Redape |
publishDate |
2017 |
url |
https://doi.org/10.48432/SLULIX |
work_keys_str_mv |
AT santosmaizanarados lidarsurveyon2097hectaresinfeliznatalivmatogrossobrasilin2017 AT kellermichael lidarsurveyon2097hectaresinfeliznatalivmatogrossobrasilin2017 AT batistellamateus lidarsurveyon2097hectaresinfeliznatalivmatogrossobrasilin2017 |
_version_ |
1816393858602237952 |