Antananarivo - 2022 Land cover map
We publish two land cover maps of the city of Antananarivo produced with data acquired in 2022 using a methodology combining machine learning and object-based image analysis (OBIA). This work follows on from work that resulted in a map of the same area in 2017. The maps are produced by processing satellite images using the Moringa processing chain developed in our lab. We use a Pleiades very high spatial resolution (VHSR) image, a time series of Sentinel-2 images, a digital terrain model (DTM) and a reference database. <br> The Pleiades image is used to generate a layer of objects using a segmentation algorithm. Each object is then classified using the variables from the THRS image, the time series and the DTM information. The hierarchical nomenclature used consists of four levels with a number of classes ranging from 4 to 19. We only publish here the most detailed map (level 4) which contains, however, in the attribute table, the information of the other levels. <br> The overall accuracy of the maps ranges from 93% to 84%. Such land cover products are very rare in Madagascar, so we decided to make them open access so that they can be used by land managers and researchers. <br> <b>Warning, since December 2, 2022 we publish a new version to limit the effects related to flooding (the wetland class was overestimated on the previous version).</b> <ul> <li>The map entitled "version 1" is produced with the SRTM digital surface model (DSM) with a spatial resolution of 30m.</li> <li>The map entitled "version 2" is produced with a DTM and a LiDAR DSM with a spatial resolution of 1m (over a reduced area)</li></ul> <b>A technical report describing the method implemented and the statistics obtained at the validation step is available here : <a href="https://agritrop.cirad.fr/602680"> https://agritrop.cirad.fr/602680 </a></b>
Main Authors: | , , , |
---|---|
Format: | Dataset biblioteca |
Language: | English French |
Published: |
CIRAD Dataverse
2022
|
Subjects: | Agricultural Sciences, Computer and Information Science, Earth and Environmental Sciences, télédétection, environnement, Pleiades, Sentinel-2, environment, spatial database, base de données spatiale, remote sensing, lidar, |
Online Access: | https://doi.org/10.18167/DVN1/RE1MDM |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dat-cirad-10.18167DVN1RE1MDM |
---|---|
record_format |
Dataverse |
institution |
CIRAD FR |
collection |
Dataverse |
country |
Francia |
countrycode |
FR |
component |
Datos de investigación |
access |
En linea En linea |
databasecode |
dat-cirad |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Centre de coopération internationale en recherche agronomique pour le développement |
language |
English French |
topic |
Agricultural Sciences Computer and Information Science Earth and Environmental Sciences télédétection environnement Pleiades Sentinel-2 environment spatial database base de données spatiale remote sensing lidar Agricultural Sciences Computer and Information Science Earth and Environmental Sciences télédétection environnement Pleiades Sentinel-2 environment spatial database base de données spatiale remote sensing lidar |
spellingShingle |
Agricultural Sciences Computer and Information Science Earth and Environmental Sciences télédétection environnement Pleiades Sentinel-2 environment spatial database base de données spatiale remote sensing lidar Agricultural Sciences Computer and Information Science Earth and Environmental Sciences télédétection environnement Pleiades Sentinel-2 environment spatial database base de données spatiale remote sensing lidar Dupuy, Stéphane Andriamanga, Andoniaina Valérie Gaetano, Raffaele Burnod, Perrine Antananarivo - 2022 Land cover map |
description |
We publish two land cover maps of the city of Antananarivo produced with data acquired in 2022 using a methodology combining machine learning and object-based image analysis (OBIA). This work follows on from work that resulted in a map of the same area in 2017. The maps are produced by processing satellite images using the Moringa processing chain developed in our lab. We use a Pleiades very high spatial resolution (VHSR) image, a time series of Sentinel-2 images, a digital terrain model (DTM) and a reference database.
<br>
The Pleiades image is used to generate a layer of objects using a segmentation algorithm. Each object is then classified using the variables from the THRS image, the time series and the DTM information. The hierarchical nomenclature used consists of four levels with a number of classes ranging from 4 to 19. We only publish here the most detailed map (level 4) which contains, however, in the attribute table, the information of the other levels.
<br>
The overall accuracy of the maps ranges from 93% to 84%. Such land cover products are very rare in Madagascar, so we decided to make them open access so that they can be used by land managers and researchers.
<br>
<b>Warning, since December 2, 2022 we publish a new version to limit the effects related to flooding (the wetland class was overestimated on the previous version).</b>
<ul>
<li>The map entitled "version 1" is produced with the SRTM digital surface model (DSM) with a spatial resolution of 30m.</li>
<li>The map entitled "version 2" is produced with a DTM and a LiDAR DSM with a spatial resolution of 1m (over a reduced area)</li></ul>
<b>A technical report describing the method implemented and the statistics obtained at the validation step is available here :
<a href="https://agritrop.cirad.fr/602680"> https://agritrop.cirad.fr/602680 </a></b> |
author2 |
Dupuy, Stéphane |
author_facet |
Dupuy, Stéphane Dupuy, Stéphane Andriamanga, Andoniaina Valérie Gaetano, Raffaele Burnod, Perrine |
format |
Dataset |
topic_facet |
Agricultural Sciences Computer and Information Science Earth and Environmental Sciences télédétection environnement Pleiades Sentinel-2 environment spatial database base de données spatiale remote sensing lidar |
author |
Dupuy, Stéphane Andriamanga, Andoniaina Valérie Gaetano, Raffaele Burnod, Perrine |
author_sort |
Dupuy, Stéphane |
title |
Antananarivo - 2022 Land cover map |
title_short |
Antananarivo - 2022 Land cover map |
title_full |
Antananarivo - 2022 Land cover map |
title_fullStr |
Antananarivo - 2022 Land cover map |
title_full_unstemmed |
Antananarivo - 2022 Land cover map |
title_sort |
antananarivo - 2022 land cover map |
publisher |
CIRAD Dataverse |
publishDate |
2022 |
url |
https://doi.org/10.18167/DVN1/RE1MDM |
work_keys_str_mv |
AT dupuystephane antananarivo2022landcovermap AT andriamangaandoniainavalerie antananarivo2022landcovermap AT gaetanoraffaele antananarivo2022landcovermap AT burnodperrine antananarivo2022landcovermap |
_version_ |
1802719247413018624 |
spelling |
dat-cirad-10.18167DVN1RE1MDM2024-05-31T01:00:06ZAntananarivo - 2022 Land cover maphttps://doi.org/10.18167/DVN1/RE1MDMDupuy, StéphaneAndriamanga, Andoniaina ValérieGaetano, RaffaeleBurnod, PerrineCIRAD DataverseWe publish two land cover maps of the city of Antananarivo produced with data acquired in 2022 using a methodology combining machine learning and object-based image analysis (OBIA). This work follows on from work that resulted in a map of the same area in 2017. The maps are produced by processing satellite images using the Moringa processing chain developed in our lab. We use a Pleiades very high spatial resolution (VHSR) image, a time series of Sentinel-2 images, a digital terrain model (DTM) and a reference database. <br> The Pleiades image is used to generate a layer of objects using a segmentation algorithm. Each object is then classified using the variables from the THRS image, the time series and the DTM information. The hierarchical nomenclature used consists of four levels with a number of classes ranging from 4 to 19. We only publish here the most detailed map (level 4) which contains, however, in the attribute table, the information of the other levels. <br> The overall accuracy of the maps ranges from 93% to 84%. Such land cover products are very rare in Madagascar, so we decided to make them open access so that they can be used by land managers and researchers. <br> <b>Warning, since December 2, 2022 we publish a new version to limit the effects related to flooding (the wetland class was overestimated on the previous version).</b> <ul> <li>The map entitled "version 1" is produced with the SRTM digital surface model (DSM) with a spatial resolution of 30m.</li> <li>The map entitled "version 2" is produced with a DTM and a LiDAR DSM with a spatial resolution of 1m (over a reduced area)</li></ul> <b>A technical report describing the method implemented and the statistics obtained at the validation step is available here : <a href="https://agritrop.cirad.fr/602680"> https://agritrop.cirad.fr/602680 </a></b><br> Nous diffusons deux cartes d'occupation des sols de la ville d'Antananarivo produites avec des données acquises en 2022 en utilisant une méthodologie combinant l'apprentissage automatique et l'analyse d'images basée sur les objets (OBIA). Ces travaux font suite à ceux ayant aboutis à une cartographie de la même zone en 2017. Les cartes sont produites en traitant des images satellites à l'aide de la chaîne de traitement Moringa développée dans notre laboratoire. Nous utilisons une image Pléiades à très haute résolution spatiale (THSR), une série temporelle d'images Sentinel-2, un modèle numérique de terrain (MNT) et une base de données de référence. <br> L'image Pléiades est utilisée pour générer une couche d'objets en utilisant un algorithme de segmentation. Chaque objet est ensuite classé à l'aide des variables issues de l’image THRS, de la série temporelle et des informations du MNT. La nomenclature hiérarchique retenue est constituée de quatre niveaux avec un nombre de classes allant de 4 à 19. Nous diffusons ici uniquement la carte la plus détaillée (niveau 4) qui contient cependant, dans la table attributaire, les informations des autres niveaux. <br> Les précisions globales des cartes vont de 93% à 84%. De tels produits d'occupation du sol sont très rares à Madagascar, nous avons donc décidé de les diffuser en libre accès pour qu’ils soient utilisables par les gestionnaires du territoire et les chercheurs. <br> <b>Attention, depuis le 2 décembre 2022 nous mettons en ligne une nouvelle version pour limiter les effets liés aux inondations (la classe marais était surestimée sur la version précédente).</b> <ul> <li>La carte intitulée « version 1 » est produite avec le modèle numérique de Surface (MNS) SRTM ayant une résolution spatiale de 30m (sur l'ensemble de l'agglomération)</li> <li>La carte intitulée « version2 » est produite avec un MNT et un MNS LiDAR d’une résolution spatiale de 1m (sur une zone réduite)</li> </ul> <b>Un rapport technique décrivant la méthode mise en œuvre et les statistiques obtenues à l'étape de validation est disponible ici : <a href="https://agritrop.cirad.fr/602680"> https://agritrop.cirad.fr/602680 </a></b>Agricultural SciencesComputer and Information ScienceEarth and Environmental SciencestélédétectionenvironnementPleiadesSentinel-2environmentspatial databasebase de données spatialeremote sensinglidarEnglishFrench2022-10-20Dupuy, StéphaneDupuy, StéphaneAndriamanga, Andoniaina ValérieGaetano, RaffaeleBurnod, PerrinePôleTHEIA (DATA TERRA)Antananarivo - Madagascar - 2022, Land use reference spatial database Andriamanga, Andoniaina Valérie; Laurence, Defrise; Rasoamalala, Eloise; Burnod, Perrine, 2022, "Antananarivo - Madagascar - 2022, Land use reference spatial database", <a href="https://doi.org/10.18167/DVN1/CBJ0QX">https://doi.org/10.18167/DVN1/CBJ0QX</a>, CIRAD Dataverse, V2Dataset |