The Self-Avoiding Walk [electronic resource] /

A self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n­ step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem­ istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation.

Saved in:
Bibliographic Details
Main Authors: Madras, Neal. author., Slade, Gordon. author., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Boston, MA : Birkhäuser Boston, 1996
Subjects:Mathematics., Probabilities., Probability Theory and Stochastic Processes.,
Online Access:http://dx.doi.org/10.1007/978-1-4612-4132-4
Tags: Add Tag
No Tags, Be the first to tag this record!
id KOHA-OAI-TEST:188624
record_format koha
institution COLPOS
collection Koha
country México
countrycode MX
component Bibliográfico
access En linea
En linea
databasecode cat-colpos
tag biblioteca
region America del Norte
libraryname Departamento de documentación y biblioteca de COLPOS
language eng
topic Mathematics.
Probabilities.
Mathematics.
Probability Theory and Stochastic Processes.
Mathematics.
Probabilities.
Mathematics.
Probability Theory and Stochastic Processes.
spellingShingle Mathematics.
Probabilities.
Mathematics.
Probability Theory and Stochastic Processes.
Mathematics.
Probabilities.
Mathematics.
Probability Theory and Stochastic Processes.
Madras, Neal. author.
Slade, Gordon. author.
SpringerLink (Online service)
The Self-Avoiding Walk [electronic resource] /
description A self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n­ step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem­ istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation.
format Texto
topic_facet Mathematics.
Probabilities.
Mathematics.
Probability Theory and Stochastic Processes.
author Madras, Neal. author.
Slade, Gordon. author.
SpringerLink (Online service)
author_facet Madras, Neal. author.
Slade, Gordon. author.
SpringerLink (Online service)
author_sort Madras, Neal. author.
title The Self-Avoiding Walk [electronic resource] /
title_short The Self-Avoiding Walk [electronic resource] /
title_full The Self-Avoiding Walk [electronic resource] /
title_fullStr The Self-Avoiding Walk [electronic resource] /
title_full_unstemmed The Self-Avoiding Walk [electronic resource] /
title_sort self-avoiding walk [electronic resource] /
publisher Boston, MA : Birkhäuser Boston,
publishDate 1996
url http://dx.doi.org/10.1007/978-1-4612-4132-4
work_keys_str_mv AT madrasnealauthor theselfavoidingwalkelectronicresource
AT sladegordonauthor theselfavoidingwalkelectronicresource
AT springerlinkonlineservice theselfavoidingwalkelectronicresource
AT madrasnealauthor selfavoidingwalkelectronicresource
AT sladegordonauthor selfavoidingwalkelectronicresource
AT springerlinkonlineservice selfavoidingwalkelectronicresource
_version_ 1756265809282334720
spelling KOHA-OAI-TEST:1886242018-07-30T23:11:58ZThe Self-Avoiding Walk [electronic resource] / Madras, Neal. author. Slade, Gordon. author. SpringerLink (Online service) textBoston, MA : Birkhäuser Boston,1996.engA self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n­ step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem­ istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation.1 Introduction -- 1.1 The basic questions -- 1.2 The connective constant -- 1.3 Generating functions -- 1.4 Critical exponents -- 1.5 The bubble condition -- 1.6 Notes -- 2 Scaling, polymers and spins -- 2.1 Scaling theory -- 2.2 Polymers -- 2.3 The N ? 0 limit -- 2.4 Notes -- 3 Some combinatorial bounds -- 3.1 The Hammersley-Welsh method -- 3.2 Self-avoiding polygons -- 3.3 Kesten’s bound on cN -- 3.4 Notes -- 4 Decay of the two-point function -- 4.1 Properties of the mass -- 4.2 Bridges and renewal theory -- 4.3 Separation of the masses -- 4.4 Ornstein-Zernike decay of GZ(0, x) -- 4.5 Notes -- 5 The lace expansion -- 5.1 Inclusion-exclusion -- 5.2 Algebraic derivation of the lace expansion -- 5.3 Example: the memory-two walk -- 5.4 Bounds on the lace expansion -- 5.5 Other models -- 5.6 Notes -- 6 Above four dimensions -- 6.1 Overview of the results -- 6.2 Convergence of the lace expansion -- 6.3 Fractional derivatives -- 6.4 cn and the mean-square displacement -- 6.5 Correlation length and infrared bound -- 6.6 Convergence to Brownian motion -- 6.7 The infinite self-avoiding walk -- 6.8 The bound on cn(0,x) -- 6.9 Notes -- 7 Pattern theorems -- 7.1 Patterns -- 7.2 Kesten’s Pattern Theorem -- 7.3 The main ratio limit theorem -- 7.4 End patterns -- 7.5 Notes -- 8 Polygons, slabs, bridges and knots -- 8.1 Bounds for the critical exponent ?sing -- 8.2 Walks with geometrical constraints -- 8.3 The infinite bridge -- 8.4 Knots in self-avoiding polygons -- 8.5 Notes -- 9 Analysis of Monte Carlo methods -- 9.1 Fundamentals and basic examples -- 9.2 Statistical considerations -- 9.3 Static methods -- 9.4 Length-conserving dynamic methods -- 9.5 Variable-length dynamic methods -- 9.6 Fixed-endpoint methods -- 9.7 Proofs -- 9.8 Notes -- 10 Related topics -- 10.1 Weak self-avoidance and the Edwards model -- 10.2 Loop-erased random walk -- 10.3 Intersections of random walks -- 10.4 The “myopic” or “true” self-avoiding walk -- A Random walk -- B Proof of the renewal theorem -- C Tables of exact enumerations -- Notation.A self-avoiding walk is a path on a lattice that does not visit the same site more than once. In spite of this simple definition, many of the most basic questions about this model are difficult to resolve in a mathematically rigorous fashion. In particular, we do not know much about how far an n­ step self-avoiding walk typically travels from its starting point, or even how many such walks there are. These and other important questions about the self-avoiding walk remain unsolved in the rigorous mathematical sense, although the physics and chemistry communities have reached consensus on the answers by a variety of nonrigorous methods, including computer simulations. But there has been progress among mathematicians as well, much of it in the last decade, and the primary goal of this book is to give an account of the current state of the art as far as rigorous results are concerned. A second goal of this book is to discuss some of the applications of the self-avoiding walk in physics and chemistry, and to describe some of the nonrigorous methods used in those fields. The model originated in chem­ istry several decades ago as a model for long-chain polymer molecules. Since then it has become an important model in statistical physics, as it exhibits critical behaviour analogous to that occurring in the Ising model and related systems such as percolation.Mathematics.Probabilities.Mathematics.Probability Theory and Stochastic Processes.Springer eBookshttp://dx.doi.org/10.1007/978-1-4612-4132-4URN:ISBN:9781461241324