Principles and Models of Biological Transport [electronic resource] /

This text is designed for a first course in biological mass transport, and the material in it is presented at a level that is appropriate to advanced undergraduates or early graduate level students. Its orientation is somewhat more physical and mathematical than a biology or standard physiology text, reflecting its origins in a transport course that I teach to undergraduate (and occasional graduate) biomedical engineering students in the Whiting School of Engineering at Johns Hopkins. The audience for my cours- and presumably for this text - also includes chemical engineering undergraduates concentrating in biotechnology, and graduate students in biophysics. The organization of this book differs from most texts that at­ tempt to present an engineering approach to biological transport. What distinguishes biological transport from other mass transfer processes is the fact that biological transport is biological. Thus, we do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological ap­ plications of these principles; rather, we begin with the biological processes themselves, and then develop the tools that are needed to describe them. As a result, more physiology is presented in this text than is often found in books dealing with engineering applica­ tions in the life sciences.

Saved in:
Bibliographic Details
Main Authors: Friedman, Morton H. author., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1986
Subjects:Life sciences., Physical chemistry., Biochemistry., Cell biology., Life Sciences., Biochemistry, general., Cell Biology., Physical Chemistry.,
Online Access:http://dx.doi.org/10.1007/978-3-662-02467-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This text is designed for a first course in biological mass transport, and the material in it is presented at a level that is appropriate to advanced undergraduates or early graduate level students. Its orientation is somewhat more physical and mathematical than a biology or standard physiology text, reflecting its origins in a transport course that I teach to undergraduate (and occasional graduate) biomedical engineering students in the Whiting School of Engineering at Johns Hopkins. The audience for my cours- and presumably for this text - also includes chemical engineering undergraduates concentrating in biotechnology, and graduate students in biophysics. The organization of this book differs from most texts that at­ tempt to present an engineering approach to biological transport. What distinguishes biological transport from other mass transfer processes is the fact that biological transport is biological. Thus, we do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological ap­ plications of these principles; rather, we begin with the biological processes themselves, and then develop the tools that are needed to describe them. As a result, more physiology is presented in this text than is often found in books dealing with engineering applica­ tions in the life sciences.