Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /

1 Complex Dimensions of Ordinary Fractal Strings -- 1.1 The Geometry of a Fractal String -- 1.2 The Geometric Zeta Function of a Fractal String -- 1.3 The Frequencies of a Fractal String and the Spectral Zeta Function -- 1.4 Higher-Dimensional Analogue: Fractal Sprays -- 2 Complex Dimensions of Self-Similar Fractal Strings -- 2.1 The Geometric Zeta Function of a Self-Similar String -- 2.2 Examples of Complex Dimensions of Self-Similar Strings -- 2.3 The Lattice and Nonlattice Case -- 2.4 The Structure of the Complex Dimensions -- 2.5 The Density of the Poles in the Nonlattice Case -- 2.6 Approximating a Fractal String and Its Complex Dimensions -- 3 Generalized Fractal Strings Viewed as Measures -- 3.1 Generalized Fractal Strings -- 3.2 The Frequencies of a Generalized Fractal String -- 3.3 Generalized Fractal Sprays -- 3.4 The Measure of a Self-Similar String -- 4 Explicit Formulas for Generalized Fractal Strings -- 4.1 Introduction -- 4.2 Preliminaries: The Heaviside Function -- 4.3 The Pointwise Explicit Formulas -- 4.4 The Distributional Explicit Formulas -- 4.5 Example: The Prime Number Theorem -- 5 The Geometry and the Spectrum of Fractal Strings -- 5.1 The Local Terms in the Explicit Formulas -- 5.2 Explicit Formulas for Lengths and Frequencies -- 5.3 The Direct Spectral Problem for Fractal Strings -- 5.4 Self-Similar Strings -- 5.5 Examples of Non-Self-Similar Strings -- 5.6 Fractal Sprays -- 6 Tubular Neighborhoods and Minkowski Measurability -- 6.1 Explicit Formula for the Volume of a Tubular Neighborhood -- 6.2 Minkowski Measurability and Complex Dimensions -- 6.3 Examples -- 7 The Riemann Hypothesis, Inverse Spectral Problems and Oscillatory Phenomena -- 7.1 The Inverse Spectral Problem -- 7.2 Complex Dimensions of Fractal Strings and the Riemann Hypothesis -- 7.3 Fractal Sprays and the Generalized Riemann Hypothesis -- 8 Generalized Cantor Strings and their Oscillations -- 8.1 The Geometry of a Generalized Cantor String -- 8.2 The Spectrum of a Generalized Cantor String -- 9 The Critical Zeros of Zeta Functions -- 9.1 The Riemann Zeta Function: No Critical Zeros in an Arithmetic Progression -- 9.2 Extension to Other Zeta Functions -- 9.3 Extension to L-Series -- 9.4 Zeta Functions of Curves Over Finite Fields -- 10 Concluding Comments -- 10.1 Conjectures about Zeros of Dirichlet Series -- 10.2 A New Definition of Fractality -- 10.3 Fractality and Self-Similarity -- 10.4 The Spectrum of a Fractal Drum -- 10.5 The Complex Dimensions as Geometric Invariants -- Appendices -- A Zeta Functions in Number Theory -- A.l The Dedekind Zeta Function -- A.3 Completion of L-Series, Functional Equation -- A.4 Epstein Zeta Functions -- A.5 Other Zeta Functions in Number Theory -- B Zeta Functions of Laplacians and Spectral Asymptotics -- B.l Weyl’s Asymptotic Formula -- B.2 Heat Asymptotic Expansion -- B.3 The Spectral Zeta Function and Its Poles -- B.4 Extensions -- B.4.1 Monotonic Second Term -- References -- Conventions -- Symbol Index -- List of Figures -- Acknowledgements.

Saved in:
Bibliographic Details
Main Authors: Lapidus, Michel L. author., Frankenhuysen, Machiel van. author., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Boston, MA : Birkhäuser Boston, 2000
Subjects:Mathematics., Algebraic geometry., Differential geometry., Number theory., Number Theory., Algebraic Geometry., Differential Geometry.,
Online Access:http://dx.doi.org/10.1007/978-1-4612-5314-3
Tags: Add Tag
No Tags, Be the first to tag this record!
id KOHA-OAI-TEST:180812
record_format koha
spelling KOHA-OAI-TEST:1808122018-07-30T23:00:56ZFractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions / Lapidus, Michel L. author. Frankenhuysen, Machiel van. author. SpringerLink (Online service) textBoston, MA : Birkhäuser Boston,2000.eng1 Complex Dimensions of Ordinary Fractal Strings -- 1.1 The Geometry of a Fractal String -- 1.2 The Geometric Zeta Function of a Fractal String -- 1.3 The Frequencies of a Fractal String and the Spectral Zeta Function -- 1.4 Higher-Dimensional Analogue: Fractal Sprays -- 2 Complex Dimensions of Self-Similar Fractal Strings -- 2.1 The Geometric Zeta Function of a Self-Similar String -- 2.2 Examples of Complex Dimensions of Self-Similar Strings -- 2.3 The Lattice and Nonlattice Case -- 2.4 The Structure of the Complex Dimensions -- 2.5 The Density of the Poles in the Nonlattice Case -- 2.6 Approximating a Fractal String and Its Complex Dimensions -- 3 Generalized Fractal Strings Viewed as Measures -- 3.1 Generalized Fractal Strings -- 3.2 The Frequencies of a Generalized Fractal String -- 3.3 Generalized Fractal Sprays -- 3.4 The Measure of a Self-Similar String -- 4 Explicit Formulas for Generalized Fractal Strings -- 4.1 Introduction -- 4.2 Preliminaries: The Heaviside Function -- 4.3 The Pointwise Explicit Formulas -- 4.4 The Distributional Explicit Formulas -- 4.5 Example: The Prime Number Theorem -- 5 The Geometry and the Spectrum of Fractal Strings -- 5.1 The Local Terms in the Explicit Formulas -- 5.2 Explicit Formulas for Lengths and Frequencies -- 5.3 The Direct Spectral Problem for Fractal Strings -- 5.4 Self-Similar Strings -- 5.5 Examples of Non-Self-Similar Strings -- 5.6 Fractal Sprays -- 6 Tubular Neighborhoods and Minkowski Measurability -- 6.1 Explicit Formula for the Volume of a Tubular Neighborhood -- 6.2 Minkowski Measurability and Complex Dimensions -- 6.3 Examples -- 7 The Riemann Hypothesis, Inverse Spectral Problems and Oscillatory Phenomena -- 7.1 The Inverse Spectral Problem -- 7.2 Complex Dimensions of Fractal Strings and the Riemann Hypothesis -- 7.3 Fractal Sprays and the Generalized Riemann Hypothesis -- 8 Generalized Cantor Strings and their Oscillations -- 8.1 The Geometry of a Generalized Cantor String -- 8.2 The Spectrum of a Generalized Cantor String -- 9 The Critical Zeros of Zeta Functions -- 9.1 The Riemann Zeta Function: No Critical Zeros in an Arithmetic Progression -- 9.2 Extension to Other Zeta Functions -- 9.3 Extension to L-Series -- 9.4 Zeta Functions of Curves Over Finite Fields -- 10 Concluding Comments -- 10.1 Conjectures about Zeros of Dirichlet Series -- 10.2 A New Definition of Fractality -- 10.3 Fractality and Self-Similarity -- 10.4 The Spectrum of a Fractal Drum -- 10.5 The Complex Dimensions as Geometric Invariants -- Appendices -- A Zeta Functions in Number Theory -- A.l The Dedekind Zeta Function -- A.3 Completion of L-Series, Functional Equation -- A.4 Epstein Zeta Functions -- A.5 Other Zeta Functions in Number Theory -- B Zeta Functions of Laplacians and Spectral Asymptotics -- B.l Weyl’s Asymptotic Formula -- B.2 Heat Asymptotic Expansion -- B.3 The Spectral Zeta Function and Its Poles -- B.4 Extensions -- B.4.1 Monotonic Second Term -- References -- Conventions -- Symbol Index -- List of Figures -- Acknowledgements.Mathematics.Algebraic geometry.Differential geometry.Number theory.Mathematics.Number Theory.Algebraic Geometry.Differential Geometry.Springer eBookshttp://dx.doi.org/10.1007/978-1-4612-5314-3URN:ISBN:9781461253143
institution COLPOS
collection Koha
country México
countrycode MX
component Bibliográfico
access En linea
En linea
databasecode cat-colpos
tag biblioteca
region America del Norte
libraryname Departamento de documentación y biblioteca de COLPOS
language eng
topic Mathematics.
Algebraic geometry.
Differential geometry.
Number theory.
Mathematics.
Number Theory.
Algebraic Geometry.
Differential Geometry.
Mathematics.
Algebraic geometry.
Differential geometry.
Number theory.
Mathematics.
Number Theory.
Algebraic Geometry.
Differential Geometry.
spellingShingle Mathematics.
Algebraic geometry.
Differential geometry.
Number theory.
Mathematics.
Number Theory.
Algebraic Geometry.
Differential Geometry.
Mathematics.
Algebraic geometry.
Differential geometry.
Number theory.
Mathematics.
Number Theory.
Algebraic Geometry.
Differential Geometry.
Lapidus, Michel L. author.
Frankenhuysen, Machiel van. author.
SpringerLink (Online service)
Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /
description 1 Complex Dimensions of Ordinary Fractal Strings -- 1.1 The Geometry of a Fractal String -- 1.2 The Geometric Zeta Function of a Fractal String -- 1.3 The Frequencies of a Fractal String and the Spectral Zeta Function -- 1.4 Higher-Dimensional Analogue: Fractal Sprays -- 2 Complex Dimensions of Self-Similar Fractal Strings -- 2.1 The Geometric Zeta Function of a Self-Similar String -- 2.2 Examples of Complex Dimensions of Self-Similar Strings -- 2.3 The Lattice and Nonlattice Case -- 2.4 The Structure of the Complex Dimensions -- 2.5 The Density of the Poles in the Nonlattice Case -- 2.6 Approximating a Fractal String and Its Complex Dimensions -- 3 Generalized Fractal Strings Viewed as Measures -- 3.1 Generalized Fractal Strings -- 3.2 The Frequencies of a Generalized Fractal String -- 3.3 Generalized Fractal Sprays -- 3.4 The Measure of a Self-Similar String -- 4 Explicit Formulas for Generalized Fractal Strings -- 4.1 Introduction -- 4.2 Preliminaries: The Heaviside Function -- 4.3 The Pointwise Explicit Formulas -- 4.4 The Distributional Explicit Formulas -- 4.5 Example: The Prime Number Theorem -- 5 The Geometry and the Spectrum of Fractal Strings -- 5.1 The Local Terms in the Explicit Formulas -- 5.2 Explicit Formulas for Lengths and Frequencies -- 5.3 The Direct Spectral Problem for Fractal Strings -- 5.4 Self-Similar Strings -- 5.5 Examples of Non-Self-Similar Strings -- 5.6 Fractal Sprays -- 6 Tubular Neighborhoods and Minkowski Measurability -- 6.1 Explicit Formula for the Volume of a Tubular Neighborhood -- 6.2 Minkowski Measurability and Complex Dimensions -- 6.3 Examples -- 7 The Riemann Hypothesis, Inverse Spectral Problems and Oscillatory Phenomena -- 7.1 The Inverse Spectral Problem -- 7.2 Complex Dimensions of Fractal Strings and the Riemann Hypothesis -- 7.3 Fractal Sprays and the Generalized Riemann Hypothesis -- 8 Generalized Cantor Strings and their Oscillations -- 8.1 The Geometry of a Generalized Cantor String -- 8.2 The Spectrum of a Generalized Cantor String -- 9 The Critical Zeros of Zeta Functions -- 9.1 The Riemann Zeta Function: No Critical Zeros in an Arithmetic Progression -- 9.2 Extension to Other Zeta Functions -- 9.3 Extension to L-Series -- 9.4 Zeta Functions of Curves Over Finite Fields -- 10 Concluding Comments -- 10.1 Conjectures about Zeros of Dirichlet Series -- 10.2 A New Definition of Fractality -- 10.3 Fractality and Self-Similarity -- 10.4 The Spectrum of a Fractal Drum -- 10.5 The Complex Dimensions as Geometric Invariants -- Appendices -- A Zeta Functions in Number Theory -- A.l The Dedekind Zeta Function -- A.3 Completion of L-Series, Functional Equation -- A.4 Epstein Zeta Functions -- A.5 Other Zeta Functions in Number Theory -- B Zeta Functions of Laplacians and Spectral Asymptotics -- B.l Weyl’s Asymptotic Formula -- B.2 Heat Asymptotic Expansion -- B.3 The Spectral Zeta Function and Its Poles -- B.4 Extensions -- B.4.1 Monotonic Second Term -- References -- Conventions -- Symbol Index -- List of Figures -- Acknowledgements.
format Texto
topic_facet Mathematics.
Algebraic geometry.
Differential geometry.
Number theory.
Mathematics.
Number Theory.
Algebraic Geometry.
Differential Geometry.
author Lapidus, Michel L. author.
Frankenhuysen, Machiel van. author.
SpringerLink (Online service)
author_facet Lapidus, Michel L. author.
Frankenhuysen, Machiel van. author.
SpringerLink (Online service)
author_sort Lapidus, Michel L. author.
title Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /
title_short Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /
title_full Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /
title_fullStr Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /
title_full_unstemmed Fractal Geometry and Number Theory [electronic resource] : Complex Dimensions of Fractal Strings and Zeros of Zeta Functions /
title_sort fractal geometry and number theory [electronic resource] : complex dimensions of fractal strings and zeros of zeta functions /
publisher Boston, MA : Birkhäuser Boston,
publishDate 2000
url http://dx.doi.org/10.1007/978-1-4612-5314-3
work_keys_str_mv AT lapidusmichellauthor fractalgeometryandnumbertheoryelectronicresourcecomplexdimensionsoffractalstringsandzerosofzetafunctions
AT frankenhuysenmachielvanauthor fractalgeometryandnumbertheoryelectronicresourcecomplexdimensionsoffractalstringsandzerosofzetafunctions
AT springerlinkonlineservice fractalgeometryandnumbertheoryelectronicresourcecomplexdimensionsoffractalstringsandzerosofzetafunctions
_version_ 1756264737814872064