The N-Vortex Problem [electronic resource] : Analytical Techniques /
Preface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Green’s Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimoto’s Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References.
Main Authors: | , |
---|---|
Format: | Texto biblioteca |
Language: | eng |
Published: |
New York, NY : Springer New York,
2001
|
Subjects: | Mathematics., Applied mathematics., Engineering mathematics., Manifolds (Mathematics)., Complex manifolds., Continuum physics., Fluids., Computational intelligence., Applications of Mathematics., Classical Continuum Physics., Fluid- and Aerodynamics., Manifolds and Cell Complexes (incl. Diff.Topology)., Computational Intelligence., |
Online Access: | http://dx.doi.org/10.1007/978-1-4684-9290-3 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
KOHA-OAI-TEST:180533 |
---|---|
record_format |
koha |
spelling |
KOHA-OAI-TEST:1805332018-07-30T23:00:44ZThe N-Vortex Problem [electronic resource] : Analytical Techniques / Newton, Paul K. author. SpringerLink (Online service) textNew York, NY : Springer New York,2001.engPreface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Green’s Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimoto’s Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References.Mathematics.Applied mathematics.Engineering mathematics.Manifolds (Mathematics).Complex manifolds.Continuum physics.Fluids.Computational intelligence.Mathematics.Applications of Mathematics.Classical Continuum Physics.Fluid- and Aerodynamics.Manifolds and Cell Complexes (incl. Diff.Topology).Computational Intelligence.Springer eBookshttp://dx.doi.org/10.1007/978-1-4684-9290-3URN:ISBN:9781468492903 |
institution |
COLPOS |
collection |
Koha |
country |
México |
countrycode |
MX |
component |
Bibliográfico |
access |
En linea En linea |
databasecode |
cat-colpos |
tag |
biblioteca |
region |
America del Norte |
libraryname |
Departamento de documentación y biblioteca de COLPOS |
language |
eng |
topic |
Mathematics. Applied mathematics. Engineering mathematics. Manifolds (Mathematics). Complex manifolds. Continuum physics. Fluids. Computational intelligence. Mathematics. Applications of Mathematics. Classical Continuum Physics. Fluid- and Aerodynamics. Manifolds and Cell Complexes (incl. Diff.Topology). Computational Intelligence. Mathematics. Applied mathematics. Engineering mathematics. Manifolds (Mathematics). Complex manifolds. Continuum physics. Fluids. Computational intelligence. Mathematics. Applications of Mathematics. Classical Continuum Physics. Fluid- and Aerodynamics. Manifolds and Cell Complexes (incl. Diff.Topology). Computational Intelligence. |
spellingShingle |
Mathematics. Applied mathematics. Engineering mathematics. Manifolds (Mathematics). Complex manifolds. Continuum physics. Fluids. Computational intelligence. Mathematics. Applications of Mathematics. Classical Continuum Physics. Fluid- and Aerodynamics. Manifolds and Cell Complexes (incl. Diff.Topology). Computational Intelligence. Mathematics. Applied mathematics. Engineering mathematics. Manifolds (Mathematics). Complex manifolds. Continuum physics. Fluids. Computational intelligence. Mathematics. Applications of Mathematics. Classical Continuum Physics. Fluid- and Aerodynamics. Manifolds and Cell Complexes (incl. Diff.Topology). Computational Intelligence. Newton, Paul K. author. SpringerLink (Online service) The N-Vortex Problem [electronic resource] : Analytical Techniques / |
description |
Preface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Green’s Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimoto’s Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References. |
format |
Texto |
topic_facet |
Mathematics. Applied mathematics. Engineering mathematics. Manifolds (Mathematics). Complex manifolds. Continuum physics. Fluids. Computational intelligence. Mathematics. Applications of Mathematics. Classical Continuum Physics. Fluid- and Aerodynamics. Manifolds and Cell Complexes (incl. Diff.Topology). Computational Intelligence. |
author |
Newton, Paul K. author. SpringerLink (Online service) |
author_facet |
Newton, Paul K. author. SpringerLink (Online service) |
author_sort |
Newton, Paul K. author. |
title |
The N-Vortex Problem [electronic resource] : Analytical Techniques / |
title_short |
The N-Vortex Problem [electronic resource] : Analytical Techniques / |
title_full |
The N-Vortex Problem [electronic resource] : Analytical Techniques / |
title_fullStr |
The N-Vortex Problem [electronic resource] : Analytical Techniques / |
title_full_unstemmed |
The N-Vortex Problem [electronic resource] : Analytical Techniques / |
title_sort |
n-vortex problem [electronic resource] : analytical techniques / |
publisher |
New York, NY : Springer New York, |
publishDate |
2001 |
url |
http://dx.doi.org/10.1007/978-1-4684-9290-3 |
work_keys_str_mv |
AT newtonpaulkauthor thenvortexproblemelectronicresourceanalyticaltechniques AT springerlinkonlineservice thenvortexproblemelectronicresourceanalyticaltechniques AT newtonpaulkauthor nvortexproblemelectronicresourceanalyticaltechniques AT springerlinkonlineservice nvortexproblemelectronicresourceanalyticaltechniques |
_version_ |
1756264699139194880 |