The N-Vortex Problem [electronic resource] : Analytical Techniques /

Preface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Green’s Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimoto’s Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References.

Saved in:
Bibliographic Details
Main Authors: Newton, Paul K. author., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: New York, NY : Springer New York, 2001
Subjects:Mathematics., Applied mathematics., Engineering mathematics., Manifolds (Mathematics)., Complex manifolds., Continuum physics., Fluids., Computational intelligence., Applications of Mathematics., Classical Continuum Physics., Fluid- and Aerodynamics., Manifolds and Cell Complexes (incl. Diff.Topology)., Computational Intelligence.,
Online Access:http://dx.doi.org/10.1007/978-1-4684-9290-3
Tags: Add Tag
No Tags, Be the first to tag this record!
id KOHA-OAI-TEST:180533
record_format koha
spelling KOHA-OAI-TEST:1805332018-07-30T23:00:44ZThe N-Vortex Problem [electronic resource] : Analytical Techniques / Newton, Paul K. author. SpringerLink (Online service) textNew York, NY : Springer New York,2001.engPreface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Green’s Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimoto’s Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References.Mathematics.Applied mathematics.Engineering mathematics.Manifolds (Mathematics).Complex manifolds.Continuum physics.Fluids.Computational intelligence.Mathematics.Applications of Mathematics.Classical Continuum Physics.Fluid- and Aerodynamics.Manifolds and Cell Complexes (incl. Diff.Topology).Computational Intelligence.Springer eBookshttp://dx.doi.org/10.1007/978-1-4684-9290-3URN:ISBN:9781468492903
institution COLPOS
collection Koha
country México
countrycode MX
component Bibliográfico
access En linea
En linea
databasecode cat-colpos
tag biblioteca
region America del Norte
libraryname Departamento de documentación y biblioteca de COLPOS
language eng
topic Mathematics.
Applied mathematics.
Engineering mathematics.
Manifolds (Mathematics).
Complex manifolds.
Continuum physics.
Fluids.
Computational intelligence.
Mathematics.
Applications of Mathematics.
Classical Continuum Physics.
Fluid- and Aerodynamics.
Manifolds and Cell Complexes (incl. Diff.Topology).
Computational Intelligence.
Mathematics.
Applied mathematics.
Engineering mathematics.
Manifolds (Mathematics).
Complex manifolds.
Continuum physics.
Fluids.
Computational intelligence.
Mathematics.
Applications of Mathematics.
Classical Continuum Physics.
Fluid- and Aerodynamics.
Manifolds and Cell Complexes (incl. Diff.Topology).
Computational Intelligence.
spellingShingle Mathematics.
Applied mathematics.
Engineering mathematics.
Manifolds (Mathematics).
Complex manifolds.
Continuum physics.
Fluids.
Computational intelligence.
Mathematics.
Applications of Mathematics.
Classical Continuum Physics.
Fluid- and Aerodynamics.
Manifolds and Cell Complexes (incl. Diff.Topology).
Computational Intelligence.
Mathematics.
Applied mathematics.
Engineering mathematics.
Manifolds (Mathematics).
Complex manifolds.
Continuum physics.
Fluids.
Computational intelligence.
Mathematics.
Applications of Mathematics.
Classical Continuum Physics.
Fluid- and Aerodynamics.
Manifolds and Cell Complexes (incl. Diff.Topology).
Computational Intelligence.
Newton, Paul K. author.
SpringerLink (Online service)
The N-Vortex Problem [electronic resource] : Analytical Techniques /
description Preface -- 1 Introduction -- 1.1 Vorticity Dynamics -- 1.2 Hamiltonian Dynamics -- 1.3 Summary of Basic Questions -- 1.4 Exercises -- 2 N Vortices in the Plane -- 2.1 General Formulation -- 2.2 N = 3 -- 2.3 N = 4 -- 2.4 Bibliographic Notes -- 2.5 Exercises -- 3 Domains with Boundaries -- 3.1 Green’s Function of the First Kind -- 3.2 Method of Images -- 3.3 Conformai Mapping Techniques -- 3.4 Breaking Integrability -- 3.5 Bibliographic Notes -- 3.6 Exercises -- 4 Vortex Motion on a Sphere -- 4.1 General Formulation -- 4.2 Dynamics of Three Vortices -- 4.3 Phase Plane Dynamics -- 4.4 3-Vortex Collapse -- 4.5 Stereographic Projection -- 4.6 Integrable Streamline Topologies -- 4.7 Boundaries -- 4.8 Bibliographic Notes -- 4.9 Exercises -- 5 Geometric Phases -- 5.1 Geometric Phases in Various Contexts -- 5.2 Phase Calculations For Slowly Varying Systems -- 5.3 Definition of the Adiabatic Hannay Angle -- 5.4 3-Vortex Problem -- 5.5 Applications -- 5.6 Exercises -- 6 Statistical Point Vortex Theories -- 6.1 Basics of Statistical Physics -- 6.2 Statistical Equilibrium Theories -- 6.3 Maximum Entropy Theories -- 6.4 Nonequilibrium Theories -- 6.5 Exercises -- 7 Vortex Patch Models -- 7.1 Introduction to Vortex Patches -- 7.2 The Kida-Neu Vortex -- 7.3 Time-Dependent Strain -- 7.4 Melander-Zabusky-Styczek Model -- 7.5 Geometric Phase for Corotating Patches -- 7.6 Viscous Shear Layer Model -- 7.7 Bibliographic Notes -- 7.8 Exercises -- 8 Vortex Filament Models -- 8.1 Introduction to Vortex Filaments and the LIE -- 8.2 DaRios-Betchov Intrinsic Equations -- 8.3 Hasimoto’s Transformation -- 8.4 LIA Invariants -- 8.5 Vortex-Stretching Models -- 8.6 Nearly Parallel Filaments -- 8.7 The Vorton Model -- 8.8 Exercises -- References.
format Texto
topic_facet Mathematics.
Applied mathematics.
Engineering mathematics.
Manifolds (Mathematics).
Complex manifolds.
Continuum physics.
Fluids.
Computational intelligence.
Mathematics.
Applications of Mathematics.
Classical Continuum Physics.
Fluid- and Aerodynamics.
Manifolds and Cell Complexes (incl. Diff.Topology).
Computational Intelligence.
author Newton, Paul K. author.
SpringerLink (Online service)
author_facet Newton, Paul K. author.
SpringerLink (Online service)
author_sort Newton, Paul K. author.
title The N-Vortex Problem [electronic resource] : Analytical Techniques /
title_short The N-Vortex Problem [electronic resource] : Analytical Techniques /
title_full The N-Vortex Problem [electronic resource] : Analytical Techniques /
title_fullStr The N-Vortex Problem [electronic resource] : Analytical Techniques /
title_full_unstemmed The N-Vortex Problem [electronic resource] : Analytical Techniques /
title_sort n-vortex problem [electronic resource] : analytical techniques /
publisher New York, NY : Springer New York,
publishDate 2001
url http://dx.doi.org/10.1007/978-1-4684-9290-3
work_keys_str_mv AT newtonpaulkauthor thenvortexproblemelectronicresourceanalyticaltechniques
AT springerlinkonlineservice thenvortexproblemelectronicresourceanalyticaltechniques
AT newtonpaulkauthor nvortexproblemelectronicresourceanalyticaltechniques
AT springerlinkonlineservice nvortexproblemelectronicresourceanalyticaltechniques
_version_ 1756264699139194880