Comprehensive Treatise of Electrochemistry [electronic resource] : Volume 7 Kinetics and Mechanisms of Electrode Processes /

1. Quantum Electrochemical Kinetics: Continuum Theory -- 1. Introduction -- 2. The Model -- 3. General Expressions for the Transition Probability -- 4. Transition Probability for Fixed Coordinates of the Ions and Reactants -- 5. Proton Transfer Reactions -- 5.1. Proton Transfer in the Case of Strong Coupling with the Medium -- 5.2. Proton Transfer in the Case of Weak Coupling with the Medium -- 6. Effect of the Discrete Structure of the Electrical Double Layer on the Kinetics -- 7. The Step of Electrochemical Desorption of Hydrogen Atoms -- 8. The Role Played by the Electronic Structure of the Electrode -- 9. Experimental Verification of the Theory -- References -- 2. Molecular Aspects of Quantum Electrode Kinetics -- 1. Introduction -- 2. Correlation between Electrochemical Electron and Spectroscopic Photon Transfer Process -- 3. Applicability of Time-Dependent Perturbation Theory for Electron Transfer Processes at Electrodes -- 4. Proton Transfer at Interfaces -- 4.1. Gurney’s Quantum Mechanical Model of Proton Transfer -- 4.2. Butler’s Modification of Gurney’s Model -- 4.3. The Quantum Character of Proton Transfer -- 4.4. Degree of Validity of the WKB Tunneling Probability Expression for Proton Transfer -- 4.5. A Model of Electrochemical Hydrogen Evolution Reaction -- 5. Quantal Aspects of Photoelectrochemical Kinetics -- 5.1. Photoeffect at Metal-Solution Interface -- 5.2. Non-Tafel Behavior of Photocurrent at Metal-Solution Interface -- 5.3. Photoeffect at Semiconductor-Solution Interface -- 6. Tunneling at the Oxide-Covered Electrode -- 7. Fermi Energy in Solution -- 8. Distribution of Electron States in Ions in Solution -- 9. The Adiabaticity and Nonadiabaticity in Electron Transfer Reactions -- 9.1. Landau-Zener Formulation -- 9.2. Transmission Coefficient, K, for Homogeneous Redox Reactions -- 10. Transition Probability of the Electron at the Electrode-Solution Interface -- 11. Concluding Remarks -- References -- 3. Kinetics of Electrochemical Reactions at Metal-Solution Interfaces -- 1. Introduction: Steps of Electrode Processes -- 2. Phenomenological Theory of the Elementary Act of an Electrode Reaction -- 2.1. Brønsted-Polanyi Relation and Electrode Reaction Activation Energy -- 2.2. Electronic Work Function and Related Values in Electrochemical Kinetics -- 2.3. Activity Coefficient of an Activated Complex -- 2.4. Temperature Dependence of Electrode Reaction Rates -- 2.5. Activationless and Barrierless Electrode Processes -- 3. Formal Kinetics of Electrode Reactions -- 3.1. Kinetic Equations -- 3.2. Stoichiometric Numbers -- 4. Electrode Double-Layer Structure and Electrode Reaction Rate. -- 4.1. Basic Relations -- 4.2. Hydrogen Evolution -- 4.3. Reduction of Anions -- 4.4. Electrode Reactions of Organic Compounds -- References -- 4. Electrocatalysis -- 1. Introduction -- 2. Electrocatalysis and Catalysis -- 2.1. General -- 2.2. Effect of Potential on Rate -- 3. The Rates of Complex Processes -- 4. Potential Energy Diagrams and Electrocatalysis -- 4.1. General -- 4.2. Some Correlations -- 5. Some Quantum Mechanical Aspects -- 5.1. General -- 5.2. Radiationless Transfer Theories -- 6. Some Electrocatalytic Reactions -- 6.1. General -- 6.2. Hydrogen Electrode Reaction -- 6.3. Oxygen Electrode Reactions -- 6.4. Organic Oxidations -- 6.5. Chlorine Evolution -- 6.6. General Remarks on Practical Electrocatalysts -- References -- 5. Hydrogen Electrode Reaction on Electrocatalytically Active Metals -- 1. Introduction -- 2. Adsorption of Hydrogen on Metal Electrodes -- 2.1. Hydrogen Wave by a Potential Sweep Technique -- 2.2. Adsorption Isotherm for Atomic Hydrogen -- 2.3. Structure of the Hydrogen Wave and Experiments on Single-Crystal Planes -- 3. Basic Kinetic Equations -- 4. Experimental Behavior and Possible Mechanisms—Existence of a Unique Rate-Determining Step -- 4.1. Possible Reaction Routes and Mechanisms -- 4.2. The Stoichiometric Number -- 4.3. The Tafel Slope -- 4.4. Magnitude of the Tafel Slope -- 4.5. The Reaction Orders -- 5. Mechanism with No Unique Rate-Determining Step -- 5.1. Tracer Experiments -- 5.2. Tafel Lines and Reaction Orders -- 5.3. Absence of rds and Affinity Distribution among the Constituent Steps -- 5.4. Synthesis of the Overall Kinetics -- 5.5. Transient Experiments on the Pd Hydrogen Electrode -- 6. Related Topics -- 6.1. Effect of Catalytic Poisons upon the Individual Step Rates -- 6.2. Hydrogen Pressure Equivalent to Hydrogen Overpotential -- 6.3. Electrolytic Hydrogenation of Organic Substances -- 7. Electrode Materials -- 7.1. Pure Metals -- 7.2. Composite Materials -- References -- 6. Oxygen Electrochemistry -- 1. Introduction -- 2. Thermodynamics of the Oxygen Electrode -- 3. Open-Circuit Potentials -- 4. Oxygen Adsorbed Species and Anodic Films on Platinum and Other Noble Metals -- 4.1. Electrochemical Studies -- 4.2. In Situ Optical Studies -- 4.3. In Situ Surface Conductivity Measurements -- 4.4. Ex Situ Characterizations -- 5. The Anodic Oxygen Evolution Reaction (OER) -- 5.1. General Features -- 5.2. Kinetics and Mechanisms of the Oxygen Evolution Reaction on Metal and. Oxide Electrodes -- 6. Cathodic Reactions of Oxygen (Oxygen Cathodes) -- 6.1. The General Scheme of Parallel and Series Reactions of Oxygen and Hydrogen Peroxide -- 6.2. The Kinetics of Molecular Oxygen Reduction on Different Metallic Electrodes -- 6.3. Oxygen Reduction on Nonmetallic Materials -- 7. Concluding Remarks -- References -- 7. Deposition and Dissolution of Metals and Alloys. Part A: Electrocrystallization -- 1. Introduction -- 2. Kinetics of Atom Incorporation -- 2.1. The Structure of a Crystalline Surface -- 2.2. The Propagation Rate of Steps -- 2.3. The Current Density on a Stepped Crystal Face -- 3. Metal Deposition on a Perfect Crystal Face -- 3.1. Energy and Rate of Formation of Two-Dimensional Nuclei -- 3.2. Kinetics of Step Propagation and Mechanism of Metal Deposition -- 3.3. Deposition Kinetics on Perfect Crystal Faces -- 4. Metal Deposition on Faces Intersected by Screw Dislocations -- 4.1. The Theory of Spiral Growth -- 4.2. Current Density and Morphology of Growth -- 5. Electrolytic Phase Formation -- 5.1. Equilibrium Forms and Forms of Growth of Crystals -- 5.2. The Nucleation Rate -- 5.3. The Nucleation-Rate-Overpotential Relation -- 5.4. Comparison with Experimental Data -- 6. Conclusions and Outlook -- References -- 7. Deposition and Dissolution of Metals and Alloys. Part B: Mechanisms, Kinetics, Texture, and Morphology -- 1. Introduction -- 2. Specific Features of the Thermodynamics of Metal and Alloy Phase Formation and Degradation -- 2.1. Equilibration of a Metal Surface with Electrolyte Containing Metal Ions—the Problem of the Reversible Potential -- 2.2. Reversible Potentials of Alloys -- 2.3. Underpotential Deposition of Metals on Foreign Substrates -- 2.4. Effect of Interactions of the Metal Ion in Solution on the Reversible Potential -- 2.5. Effect of pH on Electrode Potential -- 3. Likely Mechanisms of Metal Ion Discharge and Their Kinetic Consequences -- 3.1. Mechanism and Kinetics of the Electrode Process -- 3.2. Pseudocapacitance Effects and the Concentration of Intermediate Species -- 3.3. Effect of Anions on the Kinetics of Metal Deposition and Dissolution -- 3.4. Effect of Substrate on the Kinetics of Activation-Controlled Reactions -- of Metals -- 3.5. Kinetics of Codeposition of Metals and Effects on Alloy Phase Formation -- 4. Totally Irreversible Dissolution of Metals -- 4.1. The “Floating” Electrode Potential -- 4.2. Dissolution with the Formation of Insoluble Substances -- 4.3. Acceleration of Anodic Dissolution of Metals under Strain -- 5. Formation and Physical Properties of Metallic Deposits Obtained under Conditions of Slow Discharge and Incorporation -- 5.1. Effect of Substrate on the Growth of the Deposit -- 5.2. Factors Affecting Grain Size in a Compact Deposit -- 5.3. The Appearance of Texture in Metal Deposits -- 5.4. Development of Stress in Metal Deposits -- 6. Effect of Slow Transport of Species to the Electrode on Surface Morphology of Metal Deposits -- 6.1. Amplification of Surface Roughness -- 6.2. The Appearance and Growth of Dendrites -- 6.3. The Formation of Metal Powders -- 6.4. Effect of Periodically Changing Conditions of Deposition -- 6.5. The Phenomenon of Electropolishing -- 7. Effect of Adsorption of Foreign Substances on Surface Morphology of Metal Deposits -- 7.1. The Growth of Whiskers -- 7.2. Leveling in Metal Deposition -- 8. Conclusion -- References -- 8. Processes at Semiconductor Electrodes -- 1. Introduction -- 2. Potential and Charge Distribution at Solid-Electrolyte Interfaces -- 3. Energy Levels in Solids and Electrolytes -- 3.1. Absolute and Conventional Electrode Potentials -- 3.2. Energy Levels in Solids -- 3.3. Energy Levels in Electrolytes -- 3.4. Energy Levels at Semiconductor-Electrolyte Interfaces -- 4. Electrode Kinetics -- 4.1. Rate of Electron Transfer (Theory) -- 4.2. Electrode Reactions in Electrolytes without Redox Systems -- 4.3. Redox Processes -- 4.4. Electron Transfer Processes at Organic Insulator Electrodes -- 4.5. Evaluations of Exchange Currents and Determination of Reorientation Energies -- 5. Photoeffects -- 5.1. Photopotentials and Photocurrents -- 5.2. Applications in Electrode Kinetics -- 5.3. Photostimulated Reactions at Organic Electrodes -- 6. Reactions of Excited Molecules at Electrodes -- 6.1. Energy Levels of Excited Molecules -- 6.2. Electron Transfer Process -- 6.3. Relaxation Phenomena, Quenching, Supersensitization -- 6.4. Competitive Photochemical Reactions in the Electrolyte -- 6.5. Production of Excited Molecules by Electron Transfer -- 7. Conclusions -- References -- 9. Electrochemistry in Molten Salts -- 1. Introduction -- 1.1. General -- 1.2. Complexions -- 1.3. Acidity and Basicity -- 1.4. emf Series and Reference Electrodes -- 2. Electroanalytical Aspects -- 2.1. General Methodology -- 2.2. Ion Transport -- 2.3. Ionic Adsorption -- 2.4. Couple.

Saved in:
Bibliographic Details
Main Authors: Conway, Brian E. editor., Bockris, John O’M. editor., Yeager, Ernest. editor., Khan, Shahed U. M. editor., White, Ralph E. editor., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Boston, MA : Springer US, 1983
Subjects:Chemistry., Physical chemistry., Electrochemistry., Electrical engineering., Physical Chemistry., Electrical Engineering.,
Online Access:http://dx.doi.org/10.1007/978-1-4613-3584-9
Tags: Add Tag
No Tags, Be the first to tag this record!