Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /

Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications.

Saved in:
Bibliographic Details
Main Authors: Mendel, Jerry M. author., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: New York, NY : Springer New York, 1990
Subjects:Engineering., Electrical engineering., Communications Engineering, Networks.,
Online Access:http://dx.doi.org/10.1007/978-1-4612-3370-1
Tags: Add Tag
No Tags, Be the first to tag this record!
id KOHA-OAI-TEST:175585
record_format koha
institution COLPOS
collection Koha
country México
countrycode MX
component Bibliográfico
access En linea
En linea
databasecode cat-colpos
tag biblioteca
region America del Norte
libraryname Departamento de documentación y biblioteca de COLPOS
language eng
topic Engineering.
Electrical engineering.
Engineering.
Communications Engineering, Networks.
Engineering.
Electrical engineering.
Engineering.
Communications Engineering, Networks.
spellingShingle Engineering.
Electrical engineering.
Engineering.
Communications Engineering, Networks.
Engineering.
Electrical engineering.
Engineering.
Communications Engineering, Networks.
Mendel, Jerry M. author.
SpringerLink (Online service)
Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /
description Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications.
format Texto
topic_facet Engineering.
Electrical engineering.
Engineering.
Communications Engineering, Networks.
author Mendel, Jerry M. author.
SpringerLink (Online service)
author_facet Mendel, Jerry M. author.
SpringerLink (Online service)
author_sort Mendel, Jerry M. author.
title Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /
title_short Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /
title_full Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /
title_fullStr Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /
title_full_unstemmed Maximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing /
title_sort maximum-likelihood deconvolution [electronic resource] : a journey into model-based signal processing /
publisher New York, NY : Springer New York,
publishDate 1990
url http://dx.doi.org/10.1007/978-1-4612-3370-1
work_keys_str_mv AT mendeljerrymauthor maximumlikelihooddeconvolutionelectronicresourceajourneyintomodelbasedsignalprocessing
AT springerlinkonlineservice maximumlikelihooddeconvolutionelectronicresourceajourneyintomodelbasedsignalprocessing
_version_ 1756264020707377152
spelling KOHA-OAI-TEST:1755852018-07-30T22:53:48ZMaximum-Likelihood Deconvolution [electronic resource] : A Journey into Model-Based Signal Processing / Mendel, Jerry M. author. SpringerLink (Online service) textNew York, NY : Springer New York,1990.engConvolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications.1 - Introduction -- 1.1 Introduction -- 1.2 Our Approach -- 1.3 Likelihood Versus Probability -- 1.4 Maximum-Likelihood Method -- 1.5 Comments -- 2 - Convolutional Model -- 2.1 Introduction -- 2.2 The Seismic Convolutional Model -- 2.3 Input -- 2.4 Channel Model IR (Seismic Wavelet) -- 2.5 Measurement Noise -- 2.6 Other Effects -- 2.7 Mathematical Model -- 2.8 Summary -- 3 - Likelihood -- 3.1 Introduction -- 3.2 Loglikelihood -- 3.3 Likelihood Function -- 3.4 Using Given Information -- 3.5 Message for the Reader -- 3.6 Mathematical Likelihood Functions -- 3.7 Mathematical Loglikelihood Functions -- 3.8 Summary -- 4 - Maximizing Likelihood -- 4.1 Introduction -- 4.2 A Rationale -- 4.3 Block Component Search Algorithms -- 4.4 Mathematical Fact -- 4.5 Separation Principle -- 4.6 Update Random Parameters -- 4.7 Binary Detection -- 4.8 Update Wavelet Parameters -- 4.9 Update Statistical Parameters -- 4.10 Message for the Reader -- 4.11 Summary -- 5 - Properties and Performance -- 5.1 Introduction -- 5.2 Minimum-Variance Deconvolution -- 5.3 Detectors -- 5.4 A Modified Likelihood Function -- 5.5 An Objective Function -- 5.6 Marquardt-Levenberg Algorithm -- 5.7 Convergence -- 5.8 Entropy Interpretation -- 5.9 Summary -- 6 - Examples -- 6.1 Introduction -- 6.2 Some Real Data Examples -- 6.3 Minimum-Variance Deconvolution -- 6.4 Detection -- 6.5 Block Component Method -- 6.6 Backscatter -- 6.7 Noncausal Channel Models -- 6.8 Summary -- 7 - Mathematical Details for Chapter 4 -- 7.1 Introduction -- 7.2 Mathematical Fact -- 7.3 Separation Principle -- 7.4 Minimum-Variance Deconvolution -- 7.5 Threshold Detector -- 7.6 Single Most-Likely Replacement Detector -- 7.7 Single Spike Shift Detector -- 7.8 SSS-SMLR Detector -- 7.9 Marquardt-Levenberg Algorithm -- 7.10 Calculating Gradients -- 7.11 Calculating Second Derivatives -- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem -- 7.13 An Algorithm for ? -- 8 - Mathematical Details for Chapter 5 -- 8.1 Introduction -- 8.2 MVD Filter Properties -- 8.3 Threshold Detector -- 8.4 Modified Likelihood Function -- 8.5 Separation Principle for P and Derivation of N from P -- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem -- 8.7 SMLR1 Detector Based on N -- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm -- 8.9 Wavelet Identifiability -- 8.10 Convergence of Adaptive SMLR Detector -- 9 - Computational Considerations -- 9.1 Introduction -- 9.2 Recursive Processing -- 9.3 Summary -- References.Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications.Engineering.Electrical engineering.Engineering.Communications Engineering, Networks.Springer eBookshttp://dx.doi.org/10.1007/978-1-4612-3370-1URN:ISBN:9781461233701