Foundations of Bayesianism [electronic resource] /

Foundations of Bayesianism is an authoritative collection of papers addressing the key challenges that face the Bayesian interpretation of probability today. Some of these papers seek to clarify the relationships between Bayesian, causal and logical reasoning. Others consider the application of Bayesianism to artificial intelligence, decision theory, statistics and the philosophy of science and mathematics. The volume includes important criticisms of Bayesian reasoning and also gives an insight into some of the points of disagreement amongst advocates of the Bayesian approach. The upshot is a plethora of new problems and directions for Bayesians to pursue. The book will be of interest to graduate students or researchers who wish to learn more about Bayesianism than can be provided by introductory textbooks to the subject. Those involved with the applications of Bayesian reasoning will find essential discussion on the validity of Bayesianism and its limits, while philosophers and others interested in pure reasoning will find new ideas on normativity and the logic of belief.

Saved in:
Bibliographic Details
Main Authors: Corfield, David. editor., Williamson, Jon. editor., SpringerLink (Online service)
Format: Texto biblioteca
Language:eng
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2001
Subjects:Philosophy., Philosophy and science., Artificial intelligence., Probabilities., Statistics., Microeconomics., Philosophy of Science., Artificial Intelligence (incl. Robotics)., Probability Theory and Stochastic Processes., Statistics, general.,
Online Access:http://dx.doi.org/10.1007/978-94-017-1586-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Foundations of Bayesianism is an authoritative collection of papers addressing the key challenges that face the Bayesian interpretation of probability today. Some of these papers seek to clarify the relationships between Bayesian, causal and logical reasoning. Others consider the application of Bayesianism to artificial intelligence, decision theory, statistics and the philosophy of science and mathematics. The volume includes important criticisms of Bayesian reasoning and also gives an insight into some of the points of disagreement amongst advocates of the Bayesian approach. The upshot is a plethora of new problems and directions for Bayesians to pursue. The book will be of interest to graduate students or researchers who wish to learn more about Bayesianism than can be provided by introductory textbooks to the subject. Those involved with the applications of Bayesian reasoning will find essential discussion on the validity of Bayesianism and its limits, while philosophers and others interested in pure reasoning will find new ideas on normativity and the logic of belief.