Oxygen Variability During ENSO in the Tropical South Eastern Pacific

The Oxygen Minimum Zone (OMZ) of the Tropical South Eastern Pacific (TSEP) is one of the most intensely deoxygenated water masses of the global ocean. It is strongly affected at interannual time scales by El Niño (EN) and La Niña (LN) due to its proximity to the equatorial Pacific. In this work, the physical and biogeochemical processes associated with the subsurface oxygen variability during EN and LN in the period 1958–2008 were studied using a regional coupled physical-biogeochemical model and in situ observations. The passage of intense remotely forced coastal trapped waves caused a strong deepening (shoaling) of the OMZ upper limit during EN (LN). A close correlation between the OMZ upper limit and thermocline depths was found close to the coast, highlighting the role of physical processes. The subsurface waters over the shelf and slope off central Peru had different origins depending on ENSO conditions. Offshore of the upwelling region (near 88°W), negative and positive oxygen subsurface anomalies were caused by Equatorial zonal circulation changes during LN and EN, respectively. The altered properties were then transported to the shelf and slope (above 200 m) by the Peru-Chile undercurrent. The source of nearshore oxygenated waters was located at 3°S−4°S during neutral periods, further north (1°S−1°N) during EN and further south (4°S−5°S) during LN. The offshore deeper (< 200–300 m) OMZ was ventilated by waters originating from ~8°S during EN and LN. Enhanced mesoscale variability during EN also impacted OMZ ventilation through horizontal and vertical eddy fluxes. The vertical eddy flux decreased due to the reduced vertical gradient of oxygen in the surface layer, whereas horizontal eddy fluxes injected more oxygen into the OMZ through its meridional boundaries. In subsurface layers, remineralization of organic matter, the main biogeochemical sink of oxygen, was higher during EN than during LN due to oxygenation of the surface layer. Sensitivity experiments highlighted the larger impact of equatorial remote forcing with respect to local wind forcing during EN and LN.

Saved in:
Bibliographic Details
Main Authors: 350271 Espinoza Morriberón, Dante autor, Echevin, Vincent 350272 autor, Colas, Francois 350273 autor, Tam, Jorge 350274 autor, y 4 autores más
Format: Texto biblioteca
Language:eng
Online Access:https://doi.org/10.3389/fmars.2018.00526
Tags: Add Tag
No Tags, Be the first to tag this record!
id KOHA-OAI-BVE:150107
record_format koha
institution IICA
collection Koha
country Costa Rica
countrycode CR
component Bibliográfico
access En linea
En linea
databasecode cat-sibiica
tag biblioteca
region America Central
libraryname Sistema de Bibliotecas IICA/CATIE
language eng
description The Oxygen Minimum Zone (OMZ) of the Tropical South Eastern Pacific (TSEP) is one of the most intensely deoxygenated water masses of the global ocean. It is strongly affected at interannual time scales by El Niño (EN) and La Niña (LN) due to its proximity to the equatorial Pacific. In this work, the physical and biogeochemical processes associated with the subsurface oxygen variability during EN and LN in the period 1958–2008 were studied using a regional coupled physical-biogeochemical model and in situ observations. The passage of intense remotely forced coastal trapped waves caused a strong deepening (shoaling) of the OMZ upper limit during EN (LN). A close correlation between the OMZ upper limit and thermocline depths was found close to the coast, highlighting the role of physical processes. The subsurface waters over the shelf and slope off central Peru had different origins depending on ENSO conditions. Offshore of the upwelling region (near 88°W), negative and positive oxygen subsurface anomalies were caused by Equatorial zonal circulation changes during LN and EN, respectively. The altered properties were then transported to the shelf and slope (above 200 m) by the Peru-Chile undercurrent. The source of nearshore oxygenated waters was located at 3°S−4°S during neutral periods, further north (1°S−1°N) during EN and further south (4°S−5°S) during LN. The offshore deeper (< 200–300 m) OMZ was ventilated by waters originating from ~8°S during EN and LN. Enhanced mesoscale variability during EN also impacted OMZ ventilation through horizontal and vertical eddy fluxes. The vertical eddy flux decreased due to the reduced vertical gradient of oxygen in the surface layer, whereas horizontal eddy fluxes injected more oxygen into the OMZ through its meridional boundaries. In subsurface layers, remineralization of organic matter, the main biogeochemical sink of oxygen, was higher during EN than during LN due to oxygenation of the surface layer. Sensitivity experiments highlighted the larger impact of equatorial remote forcing with respect to local wind forcing during EN and LN.
format Texto
author 350271 Espinoza Morriberón, Dante autor
Echevin, Vincent 350272 autor
Colas, Francois 350273 autor
Tam, Jorge 350274 autor
y 4 autores más
spellingShingle 350271 Espinoza Morriberón, Dante autor
Echevin, Vincent 350272 autor
Colas, Francois 350273 autor
Tam, Jorge 350274 autor
y 4 autores más
Oxygen Variability During ENSO in the Tropical South Eastern Pacific
author_facet 350271 Espinoza Morriberón, Dante autor
Echevin, Vincent 350272 autor
Colas, Francois 350273 autor
Tam, Jorge 350274 autor
y 4 autores más
author_sort 350271 Espinoza Morriberón, Dante autor
title Oxygen Variability During ENSO in the Tropical South Eastern Pacific
title_short Oxygen Variability During ENSO in the Tropical South Eastern Pacific
title_full Oxygen Variability During ENSO in the Tropical South Eastern Pacific
title_fullStr Oxygen Variability During ENSO in the Tropical South Eastern Pacific
title_full_unstemmed Oxygen Variability During ENSO in the Tropical South Eastern Pacific
title_sort oxygen variability during enso in the tropical south eastern pacific
url https://doi.org/10.3389/fmars.2018.00526
work_keys_str_mv AT 350271espinozamorriberondanteautor oxygenvariabilityduringensointhetropicalsoutheasternpacific
AT echevinvincent350272autor oxygenvariabilityduringensointhetropicalsoutheasternpacific
AT colasfrancois350273autor oxygenvariabilityduringensointhetropicalsoutheasternpacific
AT tamjorge350274autor oxygenvariabilityduringensointhetropicalsoutheasternpacific
AT y4autoresmas oxygenvariabilityduringensointhetropicalsoutheasternpacific
_version_ 1756068066631876609
spelling KOHA-OAI-BVE:1501072022-09-02T20:29:55ZOxygen Variability During ENSO in the Tropical South Eastern Pacific 350271 Espinoza Morriberón, Dante autor Echevin, Vincent 350272 autor Colas, Francois 350273 autor Tam, Jorge 350274 autor y 4 autores más textengThe Oxygen Minimum Zone (OMZ) of the Tropical South Eastern Pacific (TSEP) is one of the most intensely deoxygenated water masses of the global ocean. It is strongly affected at interannual time scales by El Niño (EN) and La Niña (LN) due to its proximity to the equatorial Pacific. In this work, the physical and biogeochemical processes associated with the subsurface oxygen variability during EN and LN in the period 1958–2008 were studied using a regional coupled physical-biogeochemical model and in situ observations. The passage of intense remotely forced coastal trapped waves caused a strong deepening (shoaling) of the OMZ upper limit during EN (LN). A close correlation between the OMZ upper limit and thermocline depths was found close to the coast, highlighting the role of physical processes. The subsurface waters over the shelf and slope off central Peru had different origins depending on ENSO conditions. Offshore of the upwelling region (near 88°W), negative and positive oxygen subsurface anomalies were caused by Equatorial zonal circulation changes during LN and EN, respectively. The altered properties were then transported to the shelf and slope (above 200 m) by the Peru-Chile undercurrent. The source of nearshore oxygenated waters was located at 3°S−4°S during neutral periods, further north (1°S−1°N) during EN and further south (4°S−5°S) during LN. The offshore deeper (< 200–300 m) OMZ was ventilated by waters originating from ~8°S during EN and LN. Enhanced mesoscale variability during EN also impacted OMZ ventilation through horizontal and vertical eddy fluxes. The vertical eddy flux decreased due to the reduced vertical gradient of oxygen in the surface layer, whereas horizontal eddy fluxes injected more oxygen into the OMZ through its meridional boundaries. In subsurface layers, remineralization of organic matter, the main biogeochemical sink of oxygen, was higher during EN than during LN due to oxygenation of the surface layer. Sensitivity experiments highlighted the larger impact of equatorial remote forcing with respect to local wind forcing during EN and LN.The Oxygen Minimum Zone (OMZ) of the Tropical South Eastern Pacific (TSEP) is one of the most intensely deoxygenated water masses of the global ocean. It is strongly affected at interannual time scales by El Niño (EN) and La Niña (LN) due to its proximity to the equatorial Pacific. In this work, the physical and biogeochemical processes associated with the subsurface oxygen variability during EN and LN in the period 1958–2008 were studied using a regional coupled physical-biogeochemical model and in situ observations. The passage of intense remotely forced coastal trapped waves caused a strong deepening (shoaling) of the OMZ upper limit during EN (LN). A close correlation between the OMZ upper limit and thermocline depths was found close to the coast, highlighting the role of physical processes. The subsurface waters over the shelf and slope off central Peru had different origins depending on ENSO conditions. Offshore of the upwelling region (near 88°W), negative and positive oxygen subsurface anomalies were caused by Equatorial zonal circulation changes during LN and EN, respectively. The altered properties were then transported to the shelf and slope (above 200 m) by the Peru-Chile undercurrent. The source of nearshore oxygenated waters was located at 3°S−4°S during neutral periods, further north (1°S−1°N) during EN and further south (4°S−5°S) during LN. The offshore deeper (< 200–300 m) OMZ was ventilated by waters originating from ~8°S during EN and LN. Enhanced mesoscale variability during EN also impacted OMZ ventilation through horizontal and vertical eddy fluxes. The vertical eddy flux decreased due to the reduced vertical gradient of oxygen in the surface layer, whereas horizontal eddy fluxes injected more oxygen into the OMZ through its meridional boundaries. In subsurface layers, remineralization of organic matter, the main biogeochemical sink of oxygen, was higher during EN than during LN due to oxygenation of the surface layer. Sensitivity experiments highlighted the larger impact of equatorial remote forcing with respect to local wind forcing during EN and LN.https://doi.org/10.3389/fmars.2018.00526