Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation

Antarctic plants have developed mechanisms to deal with one or more adverse factors which allow them to successfully survive such extreme environment. Certain effective mechanisms to face adverse stress factors can arise from the establishment of functional symbiosis with endophytic fungi. In this work, we explored the role of fungal endophytes on host plant performance under high level of UV-B radiation, a harmful factor known to damage structure and function of cell components. In order to unveil the underlying mechanisms, we characterized the expression of genes associated to UV-B photoreception, accumulation of key flavonoids, and physiological responses of Colobanthus quitensis plants with (EC) and without (E=) fungal endophytes, under contrasting levels of UV-B radiation. The deduced proteins of CqUVR8, CqHY5, and CqFLS share the characteristic domains and display high degrees of similarity with other corresponding proteins in plants. Endophyte symbiotic plants showed lower lipid peroxidation and higher photosynthesis efficiency under high UV-B radiation. In comparison with E=, EC plants showed lower CqUVR8, CqHY5, and CqFLS transcript levels. The content of quercetin, a ROS scavenger flavonoid, in leaves of E- plants exposed to high UV-B was almost 8-fold higher than that in EC plants 48 h after treatment. Our results suggest that endophyte fungi minimize cell damage and boost physiological performance in the Antarctic plants increasing the tolerance to UV-B radiation. Fungal endophytes appear as fundamental biological partners for plants to cope with the highly damaging UV-B radiation of Antarctica.

Saved in:
Bibliographic Details
Main Authors: Barrera, Andrea, Hereme, Rasme, Ruiz Lara, Simon, Larrondo, Luis F., Gundel, Pedro Emilio, Pollmann, Stephan, Molina Montenegro, Marco A., Ramos, Patricio
Format: Texto biblioteca
Language:eng
Subjects:UV-B STRESS, ANTARCTICA, COLOBANTHUS QUITENSIS, MOLECULAR RESPONSE, FLAVONOLS, FUNGAL ENDOPHYTES, ,
Online Access:http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=53937
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
Tags: Add Tag
No Tags, Be the first to tag this record!
id KOHA-OAI-AGRO:53937
record_format koha
institution UBA FA
collection Koha
country Argentina
countrycode AR
component Bibliográfico
access En linea
En linea
databasecode cat-ceiba
tag biblioteca
region America del Sur
libraryname Biblioteca Central FAUBA
language eng
topic UV-B STRESS
ANTARCTICA
COLOBANTHUS QUITENSIS
MOLECULAR RESPONSE
FLAVONOLS
FUNGAL ENDOPHYTES

UV-B STRESS
ANTARCTICA
COLOBANTHUS QUITENSIS
MOLECULAR RESPONSE
FLAVONOLS
FUNGAL ENDOPHYTES
spellingShingle UV-B STRESS
ANTARCTICA
COLOBANTHUS QUITENSIS
MOLECULAR RESPONSE
FLAVONOLS
FUNGAL ENDOPHYTES

UV-B STRESS
ANTARCTICA
COLOBANTHUS QUITENSIS
MOLECULAR RESPONSE
FLAVONOLS
FUNGAL ENDOPHYTES
Barrera, Andrea
Hereme, Rasme
Ruiz Lara, Simon
Larrondo, Luis F.
Gundel, Pedro Emilio
Pollmann, Stephan
Molina Montenegro, Marco A.
Ramos, Patricio
Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
description Antarctic plants have developed mechanisms to deal with one or more adverse factors which allow them to successfully survive such extreme environment. Certain effective mechanisms to face adverse stress factors can arise from the establishment of functional symbiosis with endophytic fungi. In this work, we explored the role of fungal endophytes on host plant performance under high level of UV-B radiation, a harmful factor known to damage structure and function of cell components. In order to unveil the underlying mechanisms, we characterized the expression of genes associated to UV-B photoreception, accumulation of key flavonoids, and physiological responses of Colobanthus quitensis plants with (EC) and without (E=) fungal endophytes, under contrasting levels of UV-B radiation. The deduced proteins of CqUVR8, CqHY5, and CqFLS share the characteristic domains and display high degrees of similarity with other corresponding proteins in plants. Endophyte symbiotic plants showed lower lipid peroxidation and higher photosynthesis efficiency under high UV-B radiation. In comparison with E=, EC plants showed lower CqUVR8, CqHY5, and CqFLS transcript levels. The content of quercetin, a ROS scavenger flavonoid, in leaves of E- plants exposed to high UV-B was almost 8-fold higher than that in EC plants 48 h after treatment. Our results suggest that endophyte fungi minimize cell damage and boost physiological performance in the Antarctic plants increasing the tolerance to UV-B radiation. Fungal endophytes appear as fundamental biological partners for plants to cope with the highly damaging UV-B radiation of Antarctica.
format Texto
topic_facet
UV-B STRESS
ANTARCTICA
COLOBANTHUS QUITENSIS
MOLECULAR RESPONSE
FLAVONOLS
FUNGAL ENDOPHYTES
author Barrera, Andrea
Hereme, Rasme
Ruiz Lara, Simon
Larrondo, Luis F.
Gundel, Pedro Emilio
Pollmann, Stephan
Molina Montenegro, Marco A.
Ramos, Patricio
author_facet Barrera, Andrea
Hereme, Rasme
Ruiz Lara, Simon
Larrondo, Luis F.
Gundel, Pedro Emilio
Pollmann, Stephan
Molina Montenegro, Marco A.
Ramos, Patricio
author_sort Barrera, Andrea
title Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
title_short Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
title_full Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
title_fullStr Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
title_full_unstemmed Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
title_sort fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiation
url http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=53937
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=
work_keys_str_mv AT barreraandrea fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT heremerasme fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT ruizlarasimon fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT larrondoluisf fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT gundelpedroemilio fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT pollmannstephan fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT molinamontenegromarcoa fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
AT ramospatricio fungalendophytesenhancethephotoprotectivemechanismsandphotochemicalefficiencyintheantarcticcolobanthusquitensiskunthbartlexposedtouvbradiation
_version_ 1777661085546971136
spelling KOHA-OAI-AGRO:539372023-09-19T14:17:56Zhttp://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=53937http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=http://ceiba.agro.uba.ar/cgi-bin/koha/opac-detail.pl?biblionumber=AAGFungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic colobanthus quitensis (kunth) bartl. exposed to uv - b radiationBarrera, AndreaHereme, RasmeRuiz Lara, SimonLarrondo, Luis F.Gundel, Pedro EmilioPollmann, StephanMolina Montenegro, Marco A.Ramos, Patriciotextengapplication/pdfAntarctic plants have developed mechanisms to deal with one or more adverse factors which allow them to successfully survive such extreme environment. Certain effective mechanisms to face adverse stress factors can arise from the establishment of functional symbiosis with endophytic fungi. In this work, we explored the role of fungal endophytes on host plant performance under high level of UV-B radiation, a harmful factor known to damage structure and function of cell components. In order to unveil the underlying mechanisms, we characterized the expression of genes associated to UV-B photoreception, accumulation of key flavonoids, and physiological responses of Colobanthus quitensis plants with (EC) and without (E=) fungal endophytes, under contrasting levels of UV-B radiation. The deduced proteins of CqUVR8, CqHY5, and CqFLS share the characteristic domains and display high degrees of similarity with other corresponding proteins in plants. Endophyte symbiotic plants showed lower lipid peroxidation and higher photosynthesis efficiency under high UV-B radiation. In comparison with E=, EC plants showed lower CqUVR8, CqHY5, and CqFLS transcript levels. The content of quercetin, a ROS scavenger flavonoid, in leaves of E- plants exposed to high UV-B was almost 8-fold higher than that in EC plants 48 h after treatment. Our results suggest that endophyte fungi minimize cell damage and boost physiological performance in the Antarctic plants increasing the tolerance to UV-B radiation. Fungal endophytes appear as fundamental biological partners for plants to cope with the highly damaging UV-B radiation of Antarctica.Antarctic plants have developed mechanisms to deal with one or more adverse factors which allow them to successfully survive such extreme environment. Certain effective mechanisms to face adverse stress factors can arise from the establishment of functional symbiosis with endophytic fungi. In this work, we explored the role of fungal endophytes on host plant performance under high level of UV-B radiation, a harmful factor known to damage structure and function of cell components. In order to unveil the underlying mechanisms, we characterized the expression of genes associated to UV-B photoreception, accumulation of key flavonoids, and physiological responses of Colobanthus quitensis plants with (EC) and without (E=) fungal endophytes, under contrasting levels of UV-B radiation. The deduced proteins of CqUVR8, CqHY5, and CqFLS share the characteristic domains and display high degrees of similarity with other corresponding proteins in plants. Endophyte symbiotic plants showed lower lipid peroxidation and higher photosynthesis efficiency under high UV-B radiation. In comparison with E=, EC plants showed lower CqUVR8, CqHY5, and CqFLS transcript levels. The content of quercetin, a ROS scavenger flavonoid, in leaves of E- plants exposed to high UV-B was almost 8-fold higher than that in EC plants 48 h after treatment. Our results suggest that endophyte fungi minimize cell damage and boost physiological performance in the Antarctic plants increasing the tolerance to UV-B radiation. Fungal endophytes appear as fundamental biological partners for plants to cope with the highly damaging UV-B radiation of Antarctica.UV-B STRESSANTARCTICACOLOBANTHUS QUITENSISMOLECULAR RESPONSEFLAVONOLSFUNGAL ENDOPHYTESFrontiers in Ecology and Evolution