SCC and conventional concrete on site: property assessment

The present paper deals with comparing properties of hardened SCC cast during first full-scale tests in a precast factory and similar conventional concrete currently used in the same factory. The main goal was to evaluate viability of replacing the C45/55 conventional concrete, in use at the precast factory, by a SCC of the same class of resistance and maintaining the constituent materials. A wide number of specimens (cubes, cylinders, prisms) and full size precast elements were cast with both SCC and conventional vibrated concrete to enable comparing different properties of both types of hardened concrete. In order to implement SCC in this precast factory, suitability of actual current processes involved in production, mixing, transport and placing had to be evaluated. SCC exhibited improved mechanical behavior, higher resistance to fluid ingress and a more uniform strength along the full-size element due to a combination of proper mixdesign together with controlled mixing and placing on site.

Saved in:
Bibliographic Details
Main Authors: Nunes,S., Figueiras,H., Coutinho,J. Sousa, Figueiras,J.
Format: Digital revista
Language:English
Published: IBRACON - Instituto Brasileiro do Concreto 2009
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952009000100002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper deals with comparing properties of hardened SCC cast during first full-scale tests in a precast factory and similar conventional concrete currently used in the same factory. The main goal was to evaluate viability of replacing the C45/55 conventional concrete, in use at the precast factory, by a SCC of the same class of resistance and maintaining the constituent materials. A wide number of specimens (cubes, cylinders, prisms) and full size precast elements were cast with both SCC and conventional vibrated concrete to enable comparing different properties of both types of hardened concrete. In order to implement SCC in this precast factory, suitability of actual current processes involved in production, mixing, transport and placing had to be evaluated. SCC exhibited improved mechanical behavior, higher resistance to fluid ingress and a more uniform strength along the full-size element due to a combination of proper mixdesign together with controlled mixing and placing on site.