Effects of cutting height and bacterial inoculant on corn silage aerobic stability and nutrient digestibility by sheep

ABSTRACT In this study, we aimed to determine the effects of cutting height (25 or 40 cm above ground) and bacterial inoculation (a combined inoculant of Lactobacillus plantarum and Propionibacterium acidipropionici) on the chemical and microbial compositions, fermentative profile, and aerobic stability of whole-plant corn silage and nitrogen balance, intake, and apparent nutrient digestibility by sheep. To evaluate silage characteristics and sheep metabolism, we performed analyses based on a completely randomized block design with a 2×2 factorial arrangement (two cutting heights, with or without bacterial inoculant). We evaluated the chemical and microbial compositions, pH, fermentation end-products, and aerobic stability of silage. To examine nutrient digestibility of silage, we used 24 male sheep over a 21-day period. We found that the aerobic stability did not differ among the silages. Sheep fed silages produced from corn harvested at 40 cm had increased intakes of crude protein, non-fiber carbohydrate, and total digestible nutrients, whereas the non-fiber carbohydrate intake of inoculated corn silages was found to be higher than that of uninoculated silage. Furthermore, the amounts of nitrogen retained by sheep fed silage produced from corn harvested at 40 cm were higher than those of sheep fed silage produced from corn harvested at 25 cm. Collectively, our findings indicate that, despite the observed effects, a difference of 15 cm in cutting height results in relatively small changes in the chemical composition of corn silage and a limited effect on the nutrient intake and nitrogen balance of animals fed this silage. Moreover, although bacterial inoculation promotes an efficient fermentation, it has no marked effects on the aerobic stability of silage.

Saved in:
Bibliographic Details
Main Authors: Mendonça,Rita de Cássia Almeida de, Cardoso,Marcus Vinicius Santa Brígida, Pantoja,Sarah Oliveira Sousa, Souza,Melany Simões de, Domingues,Felipe Nogueira, Faturi,Cristian, Silva,Thiago Carvalho da, Rêgo,Aníbal Coutinho do
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Zootecnia 2020
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982020000100821
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT In this study, we aimed to determine the effects of cutting height (25 or 40 cm above ground) and bacterial inoculation (a combined inoculant of Lactobacillus plantarum and Propionibacterium acidipropionici) on the chemical and microbial compositions, fermentative profile, and aerobic stability of whole-plant corn silage and nitrogen balance, intake, and apparent nutrient digestibility by sheep. To evaluate silage characteristics and sheep metabolism, we performed analyses based on a completely randomized block design with a 2×2 factorial arrangement (two cutting heights, with or without bacterial inoculant). We evaluated the chemical and microbial compositions, pH, fermentation end-products, and aerobic stability of silage. To examine nutrient digestibility of silage, we used 24 male sheep over a 21-day period. We found that the aerobic stability did not differ among the silages. Sheep fed silages produced from corn harvested at 40 cm had increased intakes of crude protein, non-fiber carbohydrate, and total digestible nutrients, whereas the non-fiber carbohydrate intake of inoculated corn silages was found to be higher than that of uninoculated silage. Furthermore, the amounts of nitrogen retained by sheep fed silage produced from corn harvested at 40 cm were higher than those of sheep fed silage produced from corn harvested at 25 cm. Collectively, our findings indicate that, despite the observed effects, a difference of 15 cm in cutting height results in relatively small changes in the chemical composition of corn silage and a limited effect on the nutrient intake and nitrogen balance of animals fed this silage. Moreover, although bacterial inoculation promotes an efficient fermentation, it has no marked effects on the aerobic stability of silage.