Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages

ABSTRACT: The present study aimed to assess the antibiotic resistance in 54 indigenous Lactobacillus plantarum isolated from artisanal fermented sausages. The confirmation of the strain species was performed by multiplex-PCR assay. Antibiotic resistance was assessed by disk diffusion (DD) and Minimum Inhibitory Concentration (MIC) methods. Of 54 L. plantarum, 44 strains were genotypically confirmed as L. plantarum and 3 as Lactobacillus pentosus. The highest resistance rates were to ampicillin and streptomycin. The highest susceptibility rates were shown to tetracycline, chloramphenicol and penicillin G. None of the strains showed multidrug resistance. Resistance rates by DD and MIC were not different (P>0.05) for ampicillin, chloramphenicol, erythromycin and penicillin G. Future research should assess the genetic mechanisms underlying the phenotypic resistance in Lactobacillus strains to screen the potential probiotic strains for the development of functional meat products.

Saved in:
Bibliographic Details
Main Authors: Wolupeck,Hanna Lethycia, Morete,Crisley Aparecida, DallaSanta,Osmar Roberto, Luciano,Fernando Bittencourt, Madeira,Humberto Maciel França, Macedo,Renata Ernlund Freitas de
Format: Digital revista
Language:English
Published: Universidade Federal de Santa Maria 2017
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782017000800452
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT: The present study aimed to assess the antibiotic resistance in 54 indigenous Lactobacillus plantarum isolated from artisanal fermented sausages. The confirmation of the strain species was performed by multiplex-PCR assay. Antibiotic resistance was assessed by disk diffusion (DD) and Minimum Inhibitory Concentration (MIC) methods. Of 54 L. plantarum, 44 strains were genotypically confirmed as L. plantarum and 3 as Lactobacillus pentosus. The highest resistance rates were to ampicillin and streptomycin. The highest susceptibility rates were shown to tetracycline, chloramphenicol and penicillin G. None of the strains showed multidrug resistance. Resistance rates by DD and MIC were not different (P>0.05) for ampicillin, chloramphenicol, erythromycin and penicillin G. Future research should assess the genetic mechanisms underlying the phenotypic resistance in Lactobacillus strains to screen the potential probiotic strains for the development of functional meat products.