Soil fertility in silvopastoral systems integrating tree legumes with signalgrass (Urochloa decumbens Stapf. R. Webster)

Silvopastoral Systems (SPS) can increase overall productivity and generate continuous income in order to stimulate simultaneous growth and development of trees, forage and livestock. Moreover, the SPS with tree legumes would be important for add nutrients to the system, mainly N, and ensure the soil health and quality. Soil properties were assessed in two SPS, implanted in 2011, using tree legumes and Urochloa decumbens Stapf. R. Webster (Signalgrass). Treatments were Signalgrass + Mimosa caesalpiniifolia Benth (Sabia) and Signalgrass + Gliricidia sepium (Jacq.) Kunth ex Walp. (Gliricidia), and they were allocated in a randomized complete block design, with three replications. Soil was sampled in 2013, 2017, and 2018, at 0, 4, and 8 m along transects perpendicular to tree double rows, from 0- to 20- and 20- to 40-cm layers. Soil chemical properties included pH, P, K+, Ca2+, Mg2+, Al3+, H++Al3+, cation exchange capacity (CEC), and base saturation. In addition, light fraction of soil organic matter (LF-SOM), soil basal respiration (SBR), and natural abundance of 13C of the respired CO2 (δ13C-CO2) were analyzed. Soil pH (5.3, 5.2, 5.1), P (11.3, 7.2, 3.6 mg dm-3), and CECeffective (5.8, 5.1, 5.0 cmolc dm-3) decreased (P < 0.05) along the years 2013, 2017, and 2018, respectively. In 2018, the LF-SOM and δ13C-CO2 was greater in Sabia (1.1 g kg-1 and -16.4‰) compared to Gliricidia (0.7 g kg-1 and -18.2‰). Silvopastoral systems reduced soil fertility regardless of the tree legume species used as result of biomass nutrient stock, without maintenance fertilization. Sabia had greater deposition of LF-SOM, without increasing SBR, providing potential for microbial C use efficiency. Enriched C-CO2 isotope composition shows an efficient SOM oxidize in SPS with Gliricidia or Sabia. This information can contribute to the assessments related to CO2 balance and C retention. Both SPS contribute to C sequestration.

Saved in:
Bibliographic Details
Main Authors: Herrera Angulo, Ana María, de Mello, Alexandre Carneiro Leão, Apolinário, Valéria Xavier de Oliveira, Dubeux Jr, José Carlos B., Mora, Robert Emilio, de Freitas, Erinaldo Viana
Format: Digital revista
Language:eng
Published: Asociacion Latinoamericana de Produccion Animal 2023
Online Access:https://ojs.alpa.uy/index.php/ojs_files/article/view/3116
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silvopastoral Systems (SPS) can increase overall productivity and generate continuous income in order to stimulate simultaneous growth and development of trees, forage and livestock. Moreover, the SPS with tree legumes would be important for add nutrients to the system, mainly N, and ensure the soil health and quality. Soil properties were assessed in two SPS, implanted in 2011, using tree legumes and Urochloa decumbens Stapf. R. Webster (Signalgrass). Treatments were Signalgrass + Mimosa caesalpiniifolia Benth (Sabia) and Signalgrass + Gliricidia sepium (Jacq.) Kunth ex Walp. (Gliricidia), and they were allocated in a randomized complete block design, with three replications. Soil was sampled in 2013, 2017, and 2018, at 0, 4, and 8 m along transects perpendicular to tree double rows, from 0- to 20- and 20- to 40-cm layers. Soil chemical properties included pH, P, K+, Ca2+, Mg2+, Al3+, H++Al3+, cation exchange capacity (CEC), and base saturation. In addition, light fraction of soil organic matter (LF-SOM), soil basal respiration (SBR), and natural abundance of 13C of the respired CO2 (δ13C-CO2) were analyzed. Soil pH (5.3, 5.2, 5.1), P (11.3, 7.2, 3.6 mg dm-3), and CECeffective (5.8, 5.1, 5.0 cmolc dm-3) decreased (P < 0.05) along the years 2013, 2017, and 2018, respectively. In 2018, the LF-SOM and δ13C-CO2 was greater in Sabia (1.1 g kg-1 and -16.4‰) compared to Gliricidia (0.7 g kg-1 and -18.2‰). Silvopastoral systems reduced soil fertility regardless of the tree legume species used as result of biomass nutrient stock, without maintenance fertilization. Sabia had greater deposition of LF-SOM, without increasing SBR, providing potential for microbial C use efficiency. Enriched C-CO2 isotope composition shows an efficient SOM oxidize in SPS with Gliricidia or Sabia. This information can contribute to the assessments related to CO2 balance and C retention. Both SPS contribute to C sequestration.