Climatic controls of decomposition drive the global biogeography of forest tree symbioses

The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

Saved in:
Bibliographic Details
Main Authors: Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., Peri, Pablo Luis
Format: info:ar-repo/semantics/artículo biblioteca
Language:eng
Published: Springer Nature 2019-05-15
Subjects:Forests, Microbial Flora, Nutrients, Soil, Carbon, Nitrogen, Climate Change, Forest Ecosystems, Environmental Factors, Descomposition, Arbuscular Mycorrhiza, Bosques, Flora Microbiana, Nutrientes, Suelo, Carbono, Nitrógeno, Cambio Climático, Ecosistemas Forestales, Factores Ambientales, Descomposición, Micorrizas Arbusculares, Climatic Control, Descomposition Drive, Tree Symbioses, Control Climático, Control de la Descomposición, Simbiosis Arbórea,
Online Access:http://hdl.handle.net/20.500.12123/8952
https://www.nature.com/articles/s41586-019-1128-0
https://doi.org/10.1038/s41586-019-1128-0
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:localhost:20.500.12123-8952
record_format koha
institution INTA AR
collection DSpace
country Argentina
countrycode AR
component Bibliográfico
access En linea
databasecode dig-inta-ar
tag biblioteca
region America del Sur
libraryname Biblioteca Central del INTA Argentina
language eng
topic Forests
Microbial Flora
Nutrients
Soil
Carbon
Nitrogen
Climate Change
Forest Ecosystems
Environmental Factors
Descomposition
Arbuscular Mycorrhiza
Bosques
Flora Microbiana
Nutrientes
Suelo
Carbono
Nitrógeno
Cambio Climático
Ecosistemas Forestales
Factores Ambientales
Descomposición
Micorrizas Arbusculares
Climatic Control
Descomposition Drive
Tree Symbioses
Control Climático
Control de la Descomposición
Simbiosis Arbórea
Forests
Microbial Flora
Nutrients
Soil
Carbon
Nitrogen
Climate Change
Forest Ecosystems
Environmental Factors
Descomposition
Arbuscular Mycorrhiza
Bosques
Flora Microbiana
Nutrientes
Suelo
Carbono
Nitrógeno
Cambio Climático
Ecosistemas Forestales
Factores Ambientales
Descomposición
Micorrizas Arbusculares
Climatic Control
Descomposition Drive
Tree Symbioses
Control Climático
Control de la Descomposición
Simbiosis Arbórea
spellingShingle Forests
Microbial Flora
Nutrients
Soil
Carbon
Nitrogen
Climate Change
Forest Ecosystems
Environmental Factors
Descomposition
Arbuscular Mycorrhiza
Bosques
Flora Microbiana
Nutrientes
Suelo
Carbono
Nitrógeno
Cambio Climático
Ecosistemas Forestales
Factores Ambientales
Descomposición
Micorrizas Arbusculares
Climatic Control
Descomposition Drive
Tree Symbioses
Control Climático
Control de la Descomposición
Simbiosis Arbórea
Forests
Microbial Flora
Nutrients
Soil
Carbon
Nitrogen
Climate Change
Forest Ecosystems
Environmental Factors
Descomposition
Arbuscular Mycorrhiza
Bosques
Flora Microbiana
Nutrientes
Suelo
Carbono
Nitrógeno
Cambio Climático
Ecosistemas Forestales
Factores Ambientales
Descomposición
Micorrizas Arbusculares
Climatic Control
Descomposition Drive
Tree Symbioses
Control Climático
Control de la Descomposición
Simbiosis Arbórea
Steidinger, B. S.
Crowther, T. W.
Liang, J.
Van Nuland, M. E.
Werner, G. D. A.
Reich, P. B.
Nabuurs, G.
de-Miguel, S.
Zhou, M.
Picard, N.
Herault, B.
Zhao, X.
Zhang, C.
Routh, D.
Peri, Pablo Luis
Climatic controls of decomposition drive the global biogeography of forest tree symbioses
description The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.
format info:ar-repo/semantics/artículo
topic_facet Forests
Microbial Flora
Nutrients
Soil
Carbon
Nitrogen
Climate Change
Forest Ecosystems
Environmental Factors
Descomposition
Arbuscular Mycorrhiza
Bosques
Flora Microbiana
Nutrientes
Suelo
Carbono
Nitrógeno
Cambio Climático
Ecosistemas Forestales
Factores Ambientales
Descomposición
Micorrizas Arbusculares
Climatic Control
Descomposition Drive
Tree Symbioses
Control Climático
Control de la Descomposición
Simbiosis Arbórea
author Steidinger, B. S.
Crowther, T. W.
Liang, J.
Van Nuland, M. E.
Werner, G. D. A.
Reich, P. B.
Nabuurs, G.
de-Miguel, S.
Zhou, M.
Picard, N.
Herault, B.
Zhao, X.
Zhang, C.
Routh, D.
Peri, Pablo Luis
author_facet Steidinger, B. S.
Crowther, T. W.
Liang, J.
Van Nuland, M. E.
Werner, G. D. A.
Reich, P. B.
Nabuurs, G.
de-Miguel, S.
Zhou, M.
Picard, N.
Herault, B.
Zhao, X.
Zhang, C.
Routh, D.
Peri, Pablo Luis
author_sort Steidinger, B. S.
title Climatic controls of decomposition drive the global biogeography of forest tree symbioses
title_short Climatic controls of decomposition drive the global biogeography of forest tree symbioses
title_full Climatic controls of decomposition drive the global biogeography of forest tree symbioses
title_fullStr Climatic controls of decomposition drive the global biogeography of forest tree symbioses
title_full_unstemmed Climatic controls of decomposition drive the global biogeography of forest tree symbioses
title_sort climatic controls of decomposition drive the global biogeography of forest tree symbioses
publisher Springer Nature
publishDate 2019-05-15
url http://hdl.handle.net/20.500.12123/8952
https://www.nature.com/articles/s41586-019-1128-0
https://doi.org/10.1038/s41586-019-1128-0
work_keys_str_mv AT steidingerbs climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT crowthertw climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT liangj climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT vannulandme climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT wernergda climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT reichpb climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT nabuursg climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT demiguels climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT zhoum climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT picardn climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT heraultb climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT zhaox climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT zhangc climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT routhd climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
AT peripabloluis climaticcontrolsofdecompositiondrivetheglobalbiogeographyofforesttreesymbioses
_version_ 1756007978958323713
spelling oai:localhost:20.500.12123-89522021-03-22T17:44:08Z Climatic controls of decomposition drive the global biogeography of forest tree symbioses Steidinger, B. S. Crowther, T. W. Liang, J. Van Nuland, M. E. Werner, G. D. A. Reich, P. B. Nabuurs, G. de-Miguel, S. Zhou, M. Picard, N. Herault, B. Zhao, X. Zhang, C. Routh, D. Peri, Pablo Luis Forests Microbial Flora Nutrients Soil Carbon Nitrogen Climate Change Forest Ecosystems Environmental Factors Descomposition Arbuscular Mycorrhiza Bosques Flora Microbiana Nutrientes Suelo Carbono Nitrógeno Cambio Climático Ecosistemas Forestales Factores Ambientales Descomposición Micorrizas Arbusculares Climatic Control Descomposition Drive Tree Symbioses Control Climático Control de la Descomposición Simbiosis Arbórea The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. EEA Santa Cruz Fil: Steidinger, B. S. Stanford University. Department of Biology; Estados Unidos Fil: Crowther, T. W. ETH Zürich, Department of Environmental Systems Science; Suiza Fil: Liang, J. Purdue University. Department of Forestry and Natural Resources; Estados Unidos Fil: Liang, J. Beijing Forestry University. Research Center of Forest Management Engineering of State Forestry and Grassland Administration; China. Fil: Van Nuland, M. E. Stanford University. Department of Biology; Estados Unidos Fil: Werner, G. D. A. University of Oxford. Department of Zoology; Reino Unido Fil: Reich, P. B. University of Minnesota. Department of Forest Resources; Estados Unidos Fil: Reich, P. B. Western Sydney University. Hawkesbury Institute for the Environment; Australia. Fil: Nabuurs, G. Wageningen University and Research; Holanda Fil: de-Miguel, S. Universitat de Lleida. Department of Crop and Forest Sciences - Agrotecnio Center (UdL-Agrotecnio); España Fil: de-Miguel, S. Forest Science and Technology Centre of Catalonia (CTFC); España Fil: Zhou, M. Purdue University. Department of Forestry and Natural Resources; Estados Unidos Fil: Picard, N. Food and Agriculture Organization of the United Nations; Italia Fil: Herault, B. University of Montpellier. Cirad, UPR Forêts et Sociétés; Francia Fil: Herault, B. National Polytechnic Institute (INP-HB). Department of Forestry and Environment. Yamoussoukro; Costa de Marfil Fil: Zhao, X. Beijing Forestry University. Research Center of Forest Management Engineering of State Forestry and Grassland Administration; China. Fil: Zhang, C. Beijing Forestry University. Research Center of Forest Management Engineering of State Forestry and Grassland Administration; China. Fil: Routh, D. ETH Zürich, Department of Environmental Systems Science; Suiza Fil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina. Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. 2021-03-22T17:26:14Z 2021-03-22T17:26:14Z 2019-05-15 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://hdl.handle.net/20.500.12123/8952 https://www.nature.com/articles/s41586-019-1128-0 Steidinger, B.S., Crowther, T.W., Liang, J. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019). https://doi.org/10.1038/s41586-019-1128-0 1476-4687 (online) https://doi.org/10.1038/s41586-019-1128-0 eng info:eu-repo/semantics/restrictedAccess application/pdf Springer Nature Nature 569 (7756) : 404-408. (May 2019)